These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37684285)

  • 21. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during "reduced" human locomotion.
    Mezzarane RA; Klimstra M; Lewis A; Hundza SR; Zehr EP
    Exp Brain Res; 2011 Jan; 208(2):157-68. PubMed ID: 21063693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different conditions.
    Armstrong DM; Edgley SA
    J Physiol; 1988 Jun; 400():425-45. PubMed ID: 3418533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking.
    Bulea TC; Kim J; Damiano DL; Stanley CJ; Park HS
    Front Hum Neurosci; 2015; 9():247. PubMed ID: 26029077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel Speed-Controlled Automated Ladder Walking Device Reveals Walking Speed as a Critical Determinant of Skilled Locomotion after a Spinal Cord Injury in Adult Rats.
    Richards TM; Sharma P; Kuang A; Whitty D; Ahmed Z; Shah PK
    J Neurotrauma; 2019 Sep; 36(18):2698-2721. PubMed ID: 30688140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interlimb coordination during fictive locomotion in the thalamic cat.
    Orsal D; Cabelguen JM; Perret C
    Exp Brain Res; 1990; 82(3):536-46. PubMed ID: 2292272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cognitive-motor interference in people with mild to moderate multiple sclerosis, in comparison with healthy controls.
    Wallin A; Franzén E; Bezuidenhout L; Ekman U; Piehl F; Johansson S
    Mult Scler Relat Disord; 2022 Nov; 67():104181. PubMed ID: 36174259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cognitive performance during gait is worsened by overground but enhanced by treadmill walking.
    Penati R; Schieppati M; Nardone A
    Gait Posture; 2020 Feb; 76():182-187. PubMed ID: 31862667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomarkers for rhythmic and discrete dynamic primitives in locomotion.
    Moura Coelho R; Hirai H; Martins J; Krebs HI
    Sci Rep; 2022 Nov; 12(1):20165. PubMed ID: 36424422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
    Berendes V; Zill SN; Büschges A; Bockemühl T
    J Exp Biol; 2016 Dec; 219(Pt 23):3781-3793. PubMed ID: 27688052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of walking speed on gait stability and interlimb coordination in younger and older adults.
    Krasovsky T; Lamontagne A; Feldman AG; Levin MF
    Gait Posture; 2014; 39(1):378-85. PubMed ID: 24008010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats.
    Frigon A; Hurteau MF; Thibaudier Y; Leblond H; Telonio A; D'Angelo G
    J Neurosci; 2013 May; 33(19):8559-66. PubMed ID: 23658193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of caste and subcaste characteristics on locomotion in the ant Camponotus fellah.
    Tross J; Wolf H; Pfeffer SE
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35615922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries.
    Wernig A; Müller S
    Paraplegia; 1992 Apr; 30(4):229-38. PubMed ID: 1625890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction of human walking to transient block of vision: analysis in the context of indirect, referent control of motor actions.
    Shoja O; Towhidkhah F; Hassanlouei H; Levin MF; Bahramian A; Nadeau S; Zhang L; Feldman AG
    Exp Brain Res; 2023 May; 241(5):1353-1365. PubMed ID: 37010540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does perceptual-motor calibration generalize across two different forms of locomotion? Investigations of walking and wheelchairs.
    Kunz BR; Creem-Regehr SH; Thompson WB
    PLoS One; 2013; 8(2):e54446. PubMed ID: 23424615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of quadrupedal locomotion in the kitten.
    Howland DR; Bregman BS; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):93-107. PubMed ID: 7589328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum.
    Ogourtsova T; Archambault PS; Lamontagne A
    Restor Neurol Neurosci; 2018; 36(3):313-331. PubMed ID: 29782328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.