BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37684349)

  • 1. Differential intracellular management of fatty acids impacts on metabolic stress-stimulated glucose uptake in cardiomyocytes.
    Vanni E; Lindner K; Gavin AC; Montessuit C
    Sci Rep; 2023 Sep; 13(1):14805. PubMed ID: 37684349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic Effects of Chronic Phorbol Ester Treatment to Improve Glucose Transport in Insulin-Resistant Cardiomyocytes.
    Viglino C; Khoramdin B; Praplan G; Montessuit C
    J Cell Biochem; 2017 Dec; 118(12):4716-4727. PubMed ID: 28513986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic AICAR treatment prevents metabolic changes in cardiomyocytes exposed to free fatty acids.
    Viglino C; Foglia B; Montessuit C
    Pflugers Arch; 2019 Sep; 471(9):1219-1234. PubMed ID: 31152240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation.
    Berge RK; Madsen L; Vaagenes H; Tronstad KJ; Göttlicher M; Rustan AC
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):191-7. PubMed ID: 10493929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes.
    Ségalen C; Longnus SL; Baetz D; Counillon L; Van Obberghen E
    Endocrinology; 2008 Apr; 149(4):1490-8. PubMed ID: 18187546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired stimulation of glucose transport in cardiac myocytes exposed to very low-density lipoproteins.
    Papageorgiou I; Viglino C; Brulhart-Meynet MC; James RW; Lerch R; Montessuit C
    Nutr Metab Cardiovasc Dis; 2016 Jul; 26(7):614-622. PubMed ID: 27052924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A:1,2-diacylglycerol acyltransferase.
    Rustan AC; Nossen JO; Christiansen EN; Drevon CA
    J Lipid Res; 1988 Nov; 29(11):1417-26. PubMed ID: 2853717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of phosphatidate phosphohydrolase and diacylglycerol acyltransferase activities in the isolated rat heart. Effect of glucagon, ischaemia and diabetes.
    Schoonderwoerd K; Broekhoven-Schokker S; Hülsmann WC; Stam H
    Biochem J; 1990 Jun; 268(2):487-92. PubMed ID: 2163615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis.
    Jin Y; McFie PJ; Banman SL; Brandt C; Stone SJ
    J Biol Chem; 2014 Oct; 289(41):28237-48. PubMed ID: 25164810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase.
    Stuck BJ; Lenski M; Böhm M; Laufs U
    J Biol Chem; 2008 Nov; 283(47):32562-9. PubMed ID: 18790741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PPARgamma agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake.
    Festuccia WT; Blanchard PG; Turcotte V; Laplante M; Sariahmetoglu M; Brindley DN; Richard D; Deshaies Y
    Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1327-35. PubMed ID: 19211718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes.
    Bandyopadhyay G; Standaert ML; Galloway L; Moscat J; Farese RV
    Endocrinology; 1997 Nov; 138(11):4721-31. PubMed ID: 9348199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Role for Focal Adhesion Kinase in the Stimulation of Glucose Transport in Cardiomyocytes.
    Viglino C; Montessuit C
    J Cell Biochem; 2017 Apr; 118(4):670-677. PubMed ID: 27428469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts.
    Bagnato C; Igal RA
    J Biol Chem; 2003 Dec; 278(52):52203-11. PubMed ID: 14557275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism.
    Løvsletten NG; Vu H; Skagen C; Lund J; Kase ET; Thoresen GH; Zammit VA; Rustan AC
    Sci Rep; 2020 Jan; 10(1):238. PubMed ID: 31937853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.
    Muoio DM; Seefeld K; Witters LA; Coleman RA
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):783-91. PubMed ID: 10051453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms.
    Xu Y; Mak HY; Lukmantara I; Li YE; Hoehn KL; Huang X; Du X; Yang H
    J Biol Chem; 2019 Nov; 294(45):16740-16755. PubMed ID: 31548309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane Protein 68 Functions as an MGAT and DGAT Enzyme for Triacylglycerol Biosynthesis.
    Wang Y; Zeng F; Zhao Z; He L; He X; Pang H; Huang F; Chang P
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of DGAT enzymes in triacylglycerol metabolism.
    Bhatt-Wessel B; Jordan TW; Miller JH; Peng L
    Arch Biochem Biophys; 2018 Oct; 655():1-11. PubMed ID: 30077544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes.
    Gaidhu MP; Fediuc S; Ceddia RB
    J Biol Chem; 2006 Sep; 281(36):25956-64. PubMed ID: 16816404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.