These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3768470)

  • 1. Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300-20 K. Relation with protein dynamics.
    Cordone L; Cupane A; Leone M; Vitrano E
    Biophys Chem; 1986 Aug; 24(3):259-75. PubMed ID: 3768470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-photon resonance enhancement of third harmonic generation in human oxyhemoglobin and deoxyhemoglobin.
    Chang CF; Yu CH; Sun CK
    J Biophotonics; 2010 Oct; 3(10-11):678-85. PubMed ID: 20583034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of the pattern of gamma-resonance absorption lines in deoxy- and oxyhemoglobin].
    Oshtrakh MI; Semenkin VA
    Biofizika; 1983; 28(1):128-9. PubMed ID: 6830884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the residues involved in the oxygen-linked chloride-ion binding sites in human deoxyhemoglobin and oxyhemoglobin.
    Van Beek GG; De Bruin SH
    Eur J Biochem; 1980 Apr; 105(2):353-60. PubMed ID: 7379791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical absorption spectra of azurin and stellacyanin in glycerol/water and ethylene glycol/water solutions in the temperature range 290-20 K.
    Cupane A; Leone M; Vitrano E; Cordone L
    Biophys Chem; 1990 Nov; 38(3):213-24. PubMed ID: 17056441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl- concentrations.
    Brunzel U; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1986 May; 49(5):1069-76. PubMed ID: 3708091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic-circular-dichroism studies of Escherichia coli cytochrome bo. Identification of high-spin ferric, low-spin ferric and ferryl [Fe(IV)] forms of heme o.
    Cheesman MR; Watmough NJ; Gennis RB; Greenwood C; Thomson AJ
    Eur J Biochem; 1994 Jan; 219(1-2):595-602. PubMed ID: 8307024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple internal reflectance infrared spectra of variably hydrated hemoglobin and myoglobin films: effects of globin hydration on ligand conformer dynamics and reactivity at the heme.
    Brown WE; Sutcliffe JW; Pulsinelli PD
    Biochemistry; 1983 Jun; 22(12):2914-23. PubMed ID: 6871172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the charge transfer band in high spin state of ferric myoglobin and hemoglobin by low temperature optical and magnetic circular dichroism spectroscopy.
    Yoshida S; Iizuka T; Nozawa T; Hatano M
    Biochim Biophys Acta; 1975 Sep; 405(1):122-35. PubMed ID: 240435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic properties of oxy- and carbonmonoxyhemoglobin probed by optical spectroscopy in the temperature range of 300-20 K.
    Leone M; Cupane A; Vitrano E; Cordone L
    Biopolymers; 1987 Oct; 26(10):1769-79. PubMed ID: 3663855
    [No Abstract]   [Full Text] [Related]  

  • 11. Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin.
    Okui N; Okada E
    J Biomed Opt; 2005; 10(1):11015. PubMed ID: 15847581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrostatic pressure on spectra of heme compounds.
    Gibson QH; Carey FG
    J Biol Chem; 1977 Jun; 252(12):4098-101. PubMed ID: 863919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies.
    Sharonov YA; Sharonova NA; Figlovsky VA; Grigorjev VA
    Biochim Biophys Acta; 1982 Dec; 709(2):332-41. PubMed ID: 6295493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo ultraviolet-induced alterations of oxy- and deoxyhemoglobin.
    Kollias N; Baqer A; Sadiq I; Sayre RM
    Photochem Photobiol; 1992 Aug; 56(2):223-7. PubMed ID: 1502266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emission Mössbauer study of the stereochemical trigger that initiates cooperative interaction of hemoglobin subunits.
    Srivastava TS; Tyagi S; Nath A
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4996-5000. PubMed ID: 270735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of human hemoglobin with erythrosin. Comparison of hemoglobins with variously liganded heme groups.
    Kalousek I; Jandová D; Vodrázka Z
    Eur J Biochem; 1978 May; 86(2):417-22. PubMed ID: 658051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relations in hemoglobin as determined by x-ray absorption spectroscopy.
    Eisenberger P; Shulman RG; Brown GS; Ogawa S
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):491-5. PubMed ID: 1061148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of globin structures on the state of the heme. Ferrous low spin derivatives.
    Perutz MF; Kilmartin JV; Nagai K; Szabo A; Simon SR
    Biochemistry; 1976 Jan; 15(2):378-87. PubMed ID: 1247524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green hemoprotein of erythrocytes: methemoglobin superoxide transferase.
    Kiel JL; McQueen C; Erwin DN
    Physiol Chem Phys Med NMR; 1988; 20(2):123-8. PubMed ID: 3222347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding of asparagine, glutamine and homoserine to human erythrocytes containing hemoglobins S and CS and to soluble hemoglobins S and CS.
    Rumen NM; Chrambach A
    Prep Biochem; 1976; 6(4):223-38. PubMed ID: 959181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.