These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 3768476)

  • 1. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times. The dependence of viscosity on cell volume.
    Endre ZH; Kuchel PW
    Biophys Chem; 1986 Aug; 24(3):337-56. PubMed ID: 3768476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-erythrocyte microviscosity and diffusion of specifically labelled [glycyl-alpha-13C]glutathione by using 13C n.m.r.
    Endre ZH; Chapman BE; Kuchel PW
    Biochem J; 1983 Dec; 216(3):655-60. PubMed ID: 6667261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microviscosity of human erythrocytes studied with hypophosphite and 31P-NMR.
    Price WS; Kuchel PW; Cornell BA
    Biophys Chem; 1989 Jul; 33(3):205-15. PubMed ID: 2804239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microviscosity of human erythrocytes studied using hypophosphite two-spin order relaxation.
    Price WS; Perng BC; Tsai CL; Hwang LP
    Biophys J; 1992 Mar; 61(3):621-30. PubMed ID: 1504239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular crowding and viscosity as determinants of translational diffusion of metabolites in subcellular organelles.
    García-Pérez AI; López-Beltrán EA; Klüner P; Luque J; Ballesteros P; Cerdán S
    Arch Biochem Biophys; 1999 Feb; 362(2):329-38. PubMed ID: 9989943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-lattice relaxation times for 13C in isotope-enriched glycine accumulated in frog muscle.
    Neville MC; Wyssbrod HR
    Biophys J; 1977 Mar; 17(3):255-67. PubMed ID: 300254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between internal microviscosity of low-density erythrocytes and the microviscosity of hemoglobin solutions: an electron paramagnetic resonance study.
    Gennaro AM; Luquita A; Rasia M
    Biophys J; 1996 Jul; 71(1):389-93. PubMed ID: 8804621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells.
    Lepock JR; Cheng KH; Campbell SD; Kruuv J
    Biophys J; 1983 Dec; 44(3):405-12. PubMed ID: 6318842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions.
    Yilmaz A; Budak H; Ulak FS
    Magn Reson Imaging; 2008 Feb; 26(2):254-60. PubMed ID: 17683891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions.
    Herrmann A; Müller P
    Biochim Biophys Acta; 1986 Jan; 885(1):80-7. PubMed ID: 3002490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of labelled glycine into reduced glutathione of intact human erythrocytes by enzyme-catalysed exchange. A nuclear-magnetic-resonance study.
    York MJ; Kuchel PW; Chapman BE; Jones AJ
    Biochem J; 1982 Oct; 207(1):65-72. PubMed ID: 7181863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence.
    Zipp A; James TL; Kuntz ID; Shohet SB
    Biochim Biophys Acta; 1976 Apr; 428(2):291-303. PubMed ID: 1276160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new spin label method for the measurement of erythrocyte internal microviscosity.
    Daveloose D; Fabre G; Berleur F; Testylier G; Leterrier F
    Biochim Biophys Acta; 1983 Aug; 763(1):41-9. PubMed ID: 6307391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7Li NMR relaxation study of Li+ binding in human erythrocytes.
    Rong Q; Espanol M; Mota de Freitas D; Geraldes CF
    Biochemistry; 1993 Dec; 32(49):13490-8. PubMed ID: 8257684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
    Caines GH; Schleich T; Morgan CF; Farnsworth PN
    Biochemistry; 1990 Aug; 29(33):7547-57. PubMed ID: 2271517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscosity of supercooled aqueous glycerol solutions, validity of the Stokes-Einstein relationship, and implications for cryopreservation.
    Trejo González JA; Longinotti MP; Corti HR
    Cryobiology; 2012 Oct; 65(2):159-62. PubMed ID: 22609516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell volume dependence of 1H spin-echo NMR signals in human erythrocyte suspensions. The influence of in situ field gradients.
    Endre ZH; Kuchel PW; Chapman BE
    Biochim Biophys Acta; 1984 Mar; 803(3):137-44. PubMed ID: 6704426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data.
    Raftos JE; Bulliman BT; Kuchel PW
    J Gen Physiol; 1990 Jun; 95(6):1183-204. PubMed ID: 2374002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
    Kemple MD; Yuan P; Nollet KE; Fuchs JA; Silva N; Prendergast FG
    Biophys J; 1994 Jun; 66(6):2111-26. PubMed ID: 8075345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.