These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37685036)
21. Genetic parameters of milk and lactation curve traits of dairy cattle from research farms in Thailand. Pangmao S; Thomson PC; Khatkar MS Anim Biosci; 2022 Oct; 35(10):1499-1511. PubMed ID: 35507849 [TBL] [Abstract][Full Text] [Related]
22. An efficient estimation of crop performance in sheep fescue (Festuca ovina L.) using artificial neural network and regression models. Khalaki MA; Jahantab E; Abdipour M; Moameri M; Ghorbani A Sci Rep; 2022 Nov; 12(1):20514. PubMed ID: 36443374 [TBL] [Abstract][Full Text] [Related]
23. The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use? Mourmouris P; Tzelves L; Feretzakis G; Kalles D; Manolitsis I; Berdempes M; Varkarakis I; Skolarikos A Arch Ital Urol Androl; 2021 Dec; 93(4):418-424. PubMed ID: 34933537 [TBL] [Abstract][Full Text] [Related]
24. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Plastow G; Oliveira HR; Stothard P; Lassen J; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8272-8285. PubMed ID: 36055858 [TBL] [Abstract][Full Text] [Related]
26. Detection of different shapes of lactation curve for milk yield in dairy cattle by empirical mathematical models. Macciotta NP; Vicario D; Cappio-Borlino A J Dairy Sci; 2005 Mar; 88(3):1178-91. PubMed ID: 15738251 [TBL] [Abstract][Full Text] [Related]
27. Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Negussie E; González-Recio O; Battagin M; Bayat AR; Boland T; de Haas Y; Garcia-Rodriguez A; Garnsworthy PC; Gengler N; Kreuzer M; Kuhla B; Lassen J; Peiren N; Pszczola M; Schwarm A; Soyeurt H; Vanlierde A; Yan T; Biscarini F J Dairy Sci; 2022 Jun; 105(6):5124-5140. PubMed ID: 35346462 [TBL] [Abstract][Full Text] [Related]
28. Full model selection using regression trees for numeric predictions of biomarkers for metabolic challenges in dairy cows. Mandujano Reyes JF; Walleser E; Hachenberg S; Gruber S; Kammer M; Baumgartner C; Mansfeld R; Anklam K; Döpfer D Prev Vet Med; 2021 Aug; 193():105422. PubMed ID: 34224912 [TBL] [Abstract][Full Text] [Related]
29. Modeling extended lactations of dairy cows. Vargas B; Koops WJ; Herrero M; Van Arendonk JA J Dairy Sci; 2000 Jun; 83(6):1371-80. PubMed ID: 10877404 [TBL] [Abstract][Full Text] [Related]
30. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
31. Estimation of body condition score change in dairy cows in a seasonal calving pasture-based system using routinely available milk mid-infrared spectra and machine learning techniques. Frizzarin M; Gormley IC; Berry DP; McParland S J Dairy Sci; 2023 Jun; 106(6):4232-4244. PubMed ID: 37105880 [TBL] [Abstract][Full Text] [Related]
32. Estimation of milk yield based on udder measures of Pelibuey sheep using artificial neural networks. Angeles-Hernandez JC; Castro-Espinoza FA; Peláez-Acero A; Salinas-Martinez JA; Chay-Canul AJ; Vargas-Bello-Pérez E Sci Rep; 2022 May; 12(1):9009. PubMed ID: 35637273 [TBL] [Abstract][Full Text] [Related]
33. On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions. López S; France J; Odongo NE; McBride RA; Kebreab E; AlZahal O; McBride BW; Dijkstra J J Dairy Sci; 2015 Apr; 98(4):2701-12. PubMed ID: 25648814 [TBL] [Abstract][Full Text] [Related]
34. Application of non-linear mathematical models to describe effect of twinning on the lactation curve features in Holstein cows. Ghavi Hossein-Zadeh N Res Vet Sci; 2019 Feb; 122():111-117. PubMed ID: 30500615 [TBL] [Abstract][Full Text] [Related]
35. Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. Hempstalk K; McParland S; Berry DP J Dairy Sci; 2015 Aug; 98(8):5262-73. PubMed ID: 26074247 [TBL] [Abstract][Full Text] [Related]
36. Random regression models using B-splines functions provide more accurate genomic breeding values for milk yield and lactation persistence in Murrah buffaloes. Silva AA; Brito LF; Silva DA; Lazaro SF; Silveira KR; Stefani G; Tonhati H J Anim Breed Genet; 2023 Mar; 140(2):167-184. PubMed ID: 36326492 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of reference lactation length in Chios dairy sheep. Basdagianni Z; Sinapis E; Banos G Animal; 2019 Jan; 13(1):1-7. PubMed ID: 29695309 [TBL] [Abstract][Full Text] [Related]
38. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837 [TBL] [Abstract][Full Text] [Related]
39. Mastitis and the shape of the lactation curve in Norwegian dairy cows. Andersen F; Østerås O; Reksen O; Gröhn YT J Dairy Res; 2011 Feb; 78(1):23-31. PubMed ID: 21118610 [TBL] [Abstract][Full Text] [Related]
40. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models. Hossein-Zadeh NG J Dairy Res; 2016 Aug; 83(3):334-40. PubMed ID: 27600968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]