These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37685251)
1. A Multi-Enzyme Cascade Response for the Colorimetric Recognition of Organophosphorus Pesticides Utilizing Core-Shell Pd@Pt Nanoparticles with High Peroxidase-like Activity. Majid Z; Zhang Q; Yang Z; Che H; Cheng N Foods; 2023 Sep; 12(17):. PubMed ID: 37685251 [TBL] [Abstract][Full Text] [Related]
2. High Peroxidase-Mimicking Metal-Organic Frameworks Decorated with Platinum Nanozymes for the Colorimetric Detection of Acetylcholine Chloride and Organophosphorus Pesticides via Enzyme Cascade Reaction. Yi Y; Zhou X; Liao D; Hou J; Liu H; Zhu G Inorg Chem; 2023 Aug; 62(34):13929-13936. PubMed ID: 37583283 [TBL] [Abstract][Full Text] [Related]
3. Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents. Lei M; Ding X; Liu J; Tang Y; Chen H; Zhou Y; Zhu C; Yan H Anal Chem; 2024 Apr; 96(15):6072-6078. PubMed ID: 38577757 [TBL] [Abstract][Full Text] [Related]
4. Acetylcholine triggered enzymatic cascade reaction based on Fe Zhu S; Qin S; Wei C; Cen L; Xiong L; Luo X; Wang Y Anal Chim Acta; 2024 May; 1301():342464. PubMed ID: 38553122 [TBL] [Abstract][Full Text] [Related]
5. Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and an organophosphorus inhibitor. Han T; Wang G J Mater Chem B; 2019 Apr; 7(16):2613-2618. PubMed ID: 32254993 [TBL] [Abstract][Full Text] [Related]
6. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Nigg HN; Knaak JB Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584 [TBL] [Abstract][Full Text] [Related]
7. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Chang J; Li H; Hou T; Li F Biosens Bioelectron; 2016 Dec; 86():971-977. PubMed ID: 27498323 [TBL] [Abstract][Full Text] [Related]
8. Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food. Xu S; Li M; Li X; Jiang Y; Yu L; Zhao Y; Wen L; Xue Q Anal Bioanal Chem; 2023 Jan; 415(1):203-210. PubMed ID: 36333614 [TBL] [Abstract][Full Text] [Related]
9. Spherical Hydrogel Sensor Based on PB@Fe-COF@Au Nanoparticles with Triplet Peroxidase-like Activity and Multiple Capture Sites for Effective Detection of Organophosphorus Pesticides. Li J; Gao M; Xia X; Cen Y; Wei F; Yang J; Wang L; Hu Q; Xu G ACS Appl Mater Interfaces; 2023 Feb; 15(5):6473-6485. PubMed ID: 36718115 [TBL] [Abstract][Full Text] [Related]
10. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode. Miao SS; Wu MS; Ma LY; He XJ; Yang H Talanta; 2016 Sep; 158():142-151. PubMed ID: 27343588 [TBL] [Abstract][Full Text] [Related]
11. Recognition of malathion pesticides in agricultural samples by using α-CD functionalized gold nanoparticles as a colorimetric sensor. Sahu B; Kurrey R; Deb MK; Khalkho BR; Manikpuri S Talanta; 2023 Jul; 259():124526. PubMed ID: 37054619 [TBL] [Abstract][Full Text] [Related]
12. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Zhang SX; Xue SF; Deng J; Zhang M; Shi G; Zhou T Biosens Bioelectron; 2016 Nov; 85():457-463. PubMed ID: 27208478 [TBL] [Abstract][Full Text] [Related]
13. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Shah MM; Ren W; Irudayaraj J; Sajini AA; Ali MI; Ahmad B Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884060 [TBL] [Abstract][Full Text] [Related]
14. Thiol-suppressed I Qing Z; Li Y; Li Y; Luo G; Hu J; Zou Z; Lei Y; Liu J; Yang R Mikrochim Acta; 2020 Aug; 187(9):497. PubMed ID: 32803418 [TBL] [Abstract][Full Text] [Related]
15. Novel Ce-based coordination polymer nanoparticles with excellent oxidase mimic activity applied for colorimetric assay to organophosphorus pesticides. Wang J; Wang X; Wang M; Bian Q; Zhong J Food Chem; 2022 Dec; 397():133810. PubMed ID: 35917788 [TBL] [Abstract][Full Text] [Related]
16. Smartphone-assisted hydrogel platform based on BSA-CeO Dai Y; Xu W; Wen X; Fan H; Zhang Q; Zhang J; Zhang H; Zhu W; Hong J Mikrochim Acta; 2024 Mar; 191(4):185. PubMed ID: 38451330 [TBL] [Abstract][Full Text] [Related]
17. Simplifying the complexity: Single enzyme (choline oxidase) inhibition-based biosensor with dual-readout method for organophosphorus pesticide detection. Yan Z; Peng Z; Lai J; Xu P; Qiu P Talanta; 2023 Dec; 265():124905. PubMed ID: 37421789 [TBL] [Abstract][Full Text] [Related]
18. Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids. Lu Y; Wei M; Wang C; Wei W; Liu Y Nanoscale; 2020 Feb; 12(8):4959-4967. PubMed ID: 32053129 [TBL] [Abstract][Full Text] [Related]
19. Binary combinations of organophosphorus and synthetic pyrethroids are more potent acetylcholinesterase inhibitors than organophosphorus and carbamate mixtures: An in vitro assessment. Arora S; Balotra S; Pandey G; Kumar A Toxicol Lett; 2017 Feb; 268():8-16. PubMed ID: 27988393 [TBL] [Abstract][Full Text] [Related]
20. Capsulation of AuNCs with AIE Effect into Metal-Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Cai Y; Zhu H; Zhou W; Qiu Z; Chen C; Qileng A; Li K; Liu Y Anal Chem; 2021 May; 93(19):7275-7282. PubMed ID: 33957044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]