BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 37685286)

  • 1. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities.
    Kourti M; Aivaliotis M; Hatzipantelis E
    Diagnostics (Basel); 2023 Aug; 13(17):. PubMed ID: 37685286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities.
    Tran TH; Hunger SP
    Semin Cancer Biol; 2022 Sep; 84():144-152. PubMed ID: 33197607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia.
    Citalan-Madrid AF; Cabral-Pacheco GA; Martinez-de-Villarreal LE; Villarreal-Martinez L; Ibarra-Ramirez M; Garza-Veloz I; Cardenas-Vargas E; Marino-Martinez I; Martinez-Fierro ML
    Hematology; 2019 Dec; 24(1):637-650. PubMed ID: 31514680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children.
    Lejman M; Chałupnik A; Chilimoniuk Z; Dobosz M
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individualized therapy for childhood acute lymphoblastic leukemia.
    Raetz EA; Bhojwani D; Min DJ; Carroll WL
    Per Med; 2005 Nov; 2(4):349-361. PubMed ID: 29788576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and proteomic characterization of Philadelphia-like B-lineage acute lymphoblastic leukemia: A report of Indian patients.
    Gupta DG; Varma N; Kumar A; Naseem S; Sachdeva MUS; Sreedharanunni S; Binota J; Bose P; Khadwal A; Malhotra P; Varma S
    Cancer; 2023 Apr; 129(8):1217-1226. PubMed ID: 36738086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free quantitative proteomics reveals differentially expressed proteins in high risk childhood acute lymphoblastic leukemia.
    Xu G; Li Z; Wang L; Chen F; Chi Z; Gu M; Li S; Wu D; Miao J; Zhang Y; Hao L; Fan Y
    J Proteomics; 2017 Jan; 150():1-8. PubMed ID: 27569049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells.
    Kanderova V; Kuzilkova D; Stuchly J; Vaskova M; Brdicka T; Fiser K; Hrusak O; Lund-Johansen F; Kalina T
    Mol Cell Proteomics; 2016 Apr; 15(4):1246-61. PubMed ID: 26785729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDX models reflect the proteome landscape of pediatric acute lymphoblastic leukemia but divert in select pathways.
    Uzozie AC; Ergin EK; Rolf N; Tsui J; Lorentzian A; Weng SSH; Nierves L; Smith TG; Lim CJ; Maxwell CA; Reid GSD; Lange PF
    J Exp Clin Cancer Res; 2021 Mar; 40(1):96. PubMed ID: 33722259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of childhood leukemia.
    Hegedus CM; Gunn L; Skibola CF; Zhang L; Shiao R; Fu S; Dalmasso EA; Metayer C; Dahl GV; Buffler PA; Smith MT
    Leukemia; 2005 Oct; 19(10):1713-8. PubMed ID: 16136170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput proteomics and AI for cancer biomarker discovery.
    Xiao Q; Zhang F; Xu L; Yue L; Kon OL; Zhu Y; Guo T
    Adv Drug Deliv Rev; 2021 Sep; 176():113844. PubMed ID: 34182017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epigenome in pediatric acute lymphoblastic leukemia: drug resistance and therapeutic opportunities.
    Meyer LK; Hermiston ML
    Cancer Drug Resist; 2019; 2(2):313-325. PubMed ID: 35582725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight from mitochondrial functions and proteomics to understand cardiometabolic disorders in survivors of acute lymphoblastic leukemia.
    Leahy J; Spahis S; Bonneil E; Garofalo C; Grimard G; Morel S; Laverdière C; Krajinovic M; Drouin S; Delvin E; Sinnett D; Marcil V; Levy E
    Metabolism; 2018 Aug; 85():151-160. PubMed ID: 29563052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
    Smith JG; Gerszten RE
    Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
    Jimenez CR; Verheul HM
    Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster.
    Wang T; Shen H; Deng H; Pan H; He Q; Ni H; Tao J; Liu S; Xu L; Yao M
    J Proteomics; 2020 Aug; 225():103879. PubMed ID: 32585426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities.
    López Villar E; Wu D; Cho WC; Madero L; Wang X
    J Cell Mol Med; 2014 Jul; 18(7):1239-46. PubMed ID: 24912534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Precision medicine and molecular target drugs in pediatric hematologic malignancies: acute lymphoblastic leukemia].
    Takita J
    Rinsho Ketsueki; 2020; 61(6):657-664. PubMed ID: 32624540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput proteomics of breast cancer subtypes: Biological characterization and multiple candidate biomarker panels to patients' stratification.
    Azevedo ALK; Gomig THB; Batista M; Marchini FK; Spautz CC; Rabinovich I; Sebastião APM; Oliveira JC; Gradia DF; Cavalli IJ; Ribeiro EMSF
    J Proteomics; 2023 Aug; 285():104955. PubMed ID: 37390896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives.
    Hernandez-Valladares M; Bruserud Ø; Selheim F
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.