BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37685921)

  • 21. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamic Acid and Poly-γ-glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage (
    Quan J; Zheng W; Tan J; Li Z; Wu M; Hong SB; Zhao Y; Zhu Z; Zang Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive Photomorphogenic 1 Enhances ER Stress Tolerance in Arabidopsis.
    Kang CH; Lee ES; Nawkar GM; Park JH; Wi SD; Bae SB; Chae HB; Paeng SK; Hong JC; Lee SY
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of the genetic variability within the Q-type C2H2 zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes.
    Lawrence SD; Novak NG
    Hereditas; 2018; 155():29. PubMed ID: 30258345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis).
    Wang F; Qiu N; Ding Q; Li J; Zhang Y; Li H; Gao J
    BMC Genomics; 2014 Sep; 15(1):807. PubMed ID: 25242257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale.
    Sun B; Zheng A; Jiang M; Xue S; Yuan Q; Jiang L; Chen Q; Li M; Wang Y; Zhang Y; Luo Y; Wang X; Zhang F; Tang H
    Sci Rep; 2018 Nov; 8(1):16786. PubMed ID: 30429497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.
    Kayum MA; Jung HJ; Park JI; Ahmed NU; Saha G; Yang TJ; Nou IS
    Mol Genet Genomics; 2015 Feb; 290(1):79-95. PubMed ID: 25149146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPER/Cas in Plant Natural Product Research: Therapeutics as Anticancer and other Drug Candidates and Recent Patents.
    Dey A; Nandy S
    Recent Pat Anticancer Drug Discov; 2021; 16(4):460-468. PubMed ID: 34911411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9 genome editing of SLC37A4 gene elucidates the role of molecular markers of endoplasmic reticulum stress and apoptosis in renal involvement in glycogen storage disease type Ib.
    Skakic A; Andjelkovic M; Tosic N; Klaassen K; Djordjevic M; Pavlovic S; Stojiljkovic M
    Gene; 2019 Jun; 703():17-25. PubMed ID: 30951856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creating Targeted Gene Knockouts in Brassica oleracea Using CRISPR/Cas9.
    Lawrenson T; Hundleby P; Harwood W
    Methods Mol Biol; 2019; 1917():155-170. PubMed ID: 30610635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single and multiple gene knockouts by CRISPR-Cas9 in maize.
    Doll NM; Gilles LM; Gérentes MF; Richard C; Just J; Fierlej Y; Borrelli VMG; Gendrot G; Ingram GC; Rogowsky PM; Widiez T
    Plant Cell Rep; 2019 Apr; 38(4):487-501. PubMed ID: 30684023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage.
    Wang Y; Wu F; Bai J; He Y
    Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress.
    Eom SH; Baek SA; Kim JK; Hyun TK
    Molecules; 2018 May; 23(5):. PubMed ID: 29762546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.