These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37686013)

  • 1. A Risk Model for Prognosis and Treatment Response Prediction in Colon Adenocarcinoma Based on Genes Associated with the Characteristics of the Epithelial-Mesenchymal Transition.
    Huang H; Li T; Meng Z; Zhang X; Jiang S; Suo M; Li N
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism-based signature predicts prognosis and immunotherapy strategies for colon adenocarcinoma.
    Bai Z; Yan C; Nie Y; Zeng Q; Xu L; Wang S; Chang D
    J Gene Med; 2024 Jan; 26(1):e3620. PubMed ID: 37973153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of novel lipid metabolism-based signatures to predict prognosis and immunotherapy response for colorectal adenocarcinoma.
    Wang Y; Yao J; Zhang Z; Wei L; Wang S
    Sci Rep; 2024 Jul; 14(1):17158. PubMed ID: 39060344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of 9 Gene Signatures by WGCNA to Predict Prognosis for Colon Adenocarcinoma.
    Yang M; He H; Peng T; Lu Y; Yu J
    Comput Intell Neurosci; 2022; 2022():8598046. PubMed ID: 35392038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An epithelial-mesenchymal transition-related mRNA signature associated with the prognosis, immune infiltration and therapeutic response of colon adenocarcinoma.
    Zhang Y; Li Y; Zuo Z; Li T; An Y; Zhang W
    Pathol Oncol Res; 2023; 29():1611016. PubMed ID: 36910014
    [No Abstract]   [Full Text] [Related]  

  • 6. Developing a RiskScore Model based on Angiogenesis-related lncRNAs for Colon Adenocarcinoma Prognostic Prediction.
    Li X; Lei J; Shi Y; Peng Z; Gong M; Shu X
    Curr Med Chem; 2024; 31(17):2449-2466. PubMed ID: 37961859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic correlates of cell cycle checkpoints with distinct prognosis, molecular characteristics, immunological regulation, and therapeutic response in colorectal adenocarcinoma.
    Wang H; Wang W; Wang Z; Li X
    Front Immunol; 2023; 14():1291859. PubMed ID: 38143740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients.
    Zhang Z; Zheng S; Lin Y; Sun J; Ding N; Chen J; Zhong J; Shi L; Xue M
    BMC Cancer; 2020 Nov; 20(1):1135. PubMed ID: 33228590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating gene signatures associated with immunity in colon adenocarcinoma to predict the immunotherapy effectiveness using NFM and WGCNA algorithms.
    Liang W; Yang X; Li X; Wang P; Zhu Z; Liu S; Xu D; Zhi X; Xue J
    Aging (Albany NY); 2024 May; 16(9):7596-7621. PubMed ID: 38742936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of sixteen metabolic genes as potential biomarkers for colon adenocarcinoma.
    Zhao F; Liu Y; Gu X; Zhang B; Song C; Cui B
    J BUON; 2021; 26(4):1252-1259. PubMed ID: 34564978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico development and clinical validation of novel 8 gene signature based on lipid metabolism related genes in colon adenocarcinoma.
    Jiang C; Liu Y; Wen S; Xu C; Gu L
    Pharmacol Res; 2021 Jul; 169():105644. PubMed ID: 33940186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a prognostic model for personalized prediction of colon adenocarcinoma (COAD) patient outcomes using methylation-driven genes.
    Chen D; Zhang B; Kang K; Li L; Liao Y; Qing S; Di Y
    J Appl Genet; 2023 Dec; 64(4):713-721. PubMed ID: 37589877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a prognostic model based on genes associated with mitochondrial energy metabolic pathway in colon adenocarcinoma and its clinical significance.
    Zhang X; Liang C; Zhou B; Pang L
    J Mol Recognit; 2023 Aug; 36(8):e3044. PubMed ID: 37322568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of necroptosis-related genes for predicting prognosis and exploring immune infiltration landscape in colon adenocarcinoma.
    Wang Y; Lin MG; Meng L; Chen ZM; Wei ZJ; Ying SC; Xu A
    Front Oncol; 2022; 12():941156. PubMed ID: 36505813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma.
    Nan H; Guo P; Fan J; Zeng W; Hu C; Zheng C; Pan B; Cao Y; Ge Y; Xue X; Li W; Lin K
    Front Immunol; 2023; 14():1093974. PubMed ID: 36949947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel enterocyte-related 4-gene signature for predicting prognosis in colon adenocarcinoma.
    Cheng X; Wei Y; Fu Y; Li J; Han L
    Front Immunol; 2022; 13():1052182. PubMed ID: 36532007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the six-hormone secretion-related gene signature as a prognostic biomarker for colon adenocarcinoma.
    Jia X; Zhang T; Lv X; Du H; Sun Y; Guan Y
    Cancer Biomark; 2023; 38(4):523-535. PubMed ID: 38143338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and validation of a prognostic model for colon adenocarcinoma based on bile acid metabolism-related genes.
    Luo Q; Zhou P; Chang S; Huang Z; Zeng X
    Sci Rep; 2023 Aug; 13(1):12728. PubMed ID: 37543674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Four-Gene Metabolic Signature to Evaluate the Prognosis of Colon Adenocarcinoma Patients.
    Zheng Y; Wu R; Wang X; Yin C
    Front Public Health; 2022; 10():860381. PubMed ID: 35462848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AEBP1 Is One of the Epithelial-Mesenchymal Transition Regulatory Genes in Colon Adenocarcinoma.
    Li D; Liu Z; Ding X; Qin Z
    Biomed Res Int; 2021; 2021():3108933. PubMed ID: 34938806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.