BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 37686146)

  • 21. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferring single-cell gene regulatory network by non-redundant mutual information.
    Zeng Y; He Y; Zheng R; Li M
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37715282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling gene regulatory networks using neural network architectures.
    Shu H; Zhou J; Lian Q; Li H; Zhao D; Zeng J; Ma J
    Nat Comput Sci; 2021 Jul; 1(7):491-501. PubMed ID: 38217125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MulCNN: An efficient and accurate deep learning method based on gene embedding for cell type identification in single-cell RNA-seq data.
    Jiao L; Ren Y; Wang L; Gao C; Wang S; Song T
    Front Genet; 2023; 14():1179859. PubMed ID: 37082202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dozer: Debiased personalized gene co-expression networks for population-scale scRNA-seq data.
    Lu S; Keleş S
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell causal network inferred by cross-mapping entropy.
    Li L; Xia R; Chen W; Zhao Q; Tao P; Chen L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint learning of multiple gene networks from single-cell gene expression data.
    Wu N; Yin F; Ou-Yang L; Zhu Z; Xie W
    Comput Struct Biotechnol J; 2020; 18():2583-2595. PubMed ID: 33033579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.
    Brendel M; Su C; Bai Z; Zhang H; Elemento O; Wang F
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):814-835. PubMed ID: 36528240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scMGCN: A Multi-View Graph Convolutional Network for Cell Type Identification in scRNA-seq Data.
    Sun H; Qu H; Duan K; Du W
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data.
    Heydari T; A Langley M; Fisher CL; Aguilar-Hidalgo D; Shukla S; Yachie-Kinoshita A; Hughes M; M McNagny K; Zandstra PW
    PLoS Comput Biol; 2022 Feb; 18(2):e1009907. PubMed ID: 35213533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging.
    Luo Q; Yu Y; Lan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34962260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Data-Distribution and Successive Spline Points based discretization approach for evolving gene regulatory networks from scRNA-Seq time-series data using Cartesian Genetic Programming.
    da Silva JEH; de Carvalho PC; Camata JJ; de Oliveira IL; Bernardino HS
    Biosystems; 2024 Feb; 236():105126. PubMed ID: 38278505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning.
    Jia S; Lysenko A; Boroevich KA; Sharma A; Tsunoda T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37523217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GOWDL: gene ontology-driven wide and deep learning model for cell typing of scRNA-seq data.
    Fiannaca A; La Rosa M; La Paglia L; Gaglio S; Urso A
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37756593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.