These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3768691)

  • 41. Reorganization of organotypic cultures of mouse cerebellum exposed to cytosine arabinoside: a timed ultrastructural study.
    Seil FJ; Herndon RM; Tiekotter KL; Blank NK
    J Comp Neurol; 1991 Nov; 313(2):193-212. PubMed ID: 1765580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field emission scanning electron microscopy and freeze-fracture transmission electron microscopy of mouse cerebellar synaptic contacts.
    Castejón OJ; Apkarian RP; Castejón HV; Alvarado MV
    J Submicrosc Cytol Pathol; 2001 Jul; 33(3):289-300. PubMed ID: 11846097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Purkinje neuron: II. Electron microscopic analysis of the mature Purkinje neuron in organotypic culture.
    Aggerwal AS; Hendelman WJ
    J Comp Neurol; 1980 Oct; 193(4):1081-96. PubMed ID: 7430438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study.
    Privat A; Drian MJ
    J Comp Neurol; 1976 Mar; 166(2):201-43. PubMed ID: 1262555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time course of mossy fiber degeneration following pontine ablation in the rat.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1984 Aug; 227(3):401-13. PubMed ID: 6332832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum.
    Napper RM; Harvey RJ
    J Comp Neurol; 1988 Aug; 274(2):158-67. PubMed ID: 3209739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initial junctions between developing parallel fibers and Purkinje cells are different from mature synaptic junctions.
    Landis DM
    J Comp Neurol; 1987 Jun; 260(4):513-25. PubMed ID: 3112188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution of TAG-1 and synaptophysin in the developing cerebellar cortex: relationship to Purkinje cell dendritic development.
    Stottmann RW; Rivas RJ
    J Comp Neurol; 1998 May; 395(1):121-35. PubMed ID: 9590550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional analysis of dendritic spines. III. Glial sheath.
    Spacek J
    Anat Embryol (Berl); 1985; 171(2):245-52. PubMed ID: 3985373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo.
    Chu CP; Zhao GY; Jin R; Zhao SN; Sun L; Qiu DL
    Eur J Neurosci; 2014 May; 39(10):1624-31. PubMed ID: 24666426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The fine structure of the Purkinje cell and its afferents in lurcher chimeric mice.
    Caddy KW; Herrup K
    J Comp Neurol; 1991 Mar; 305(3):421-34. PubMed ID: 2037715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scanning electron microscope recognition of intracortical climbing fiber pathways in the cerebellar cortex.
    Castejón OJ
    Scan Electron Microsc; 1983; (Pt 3):1427-34. PubMed ID: 6648349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphological evidence of climbing fiber plasticity after long-term alcohol intake.
    Tavares MA; Paula-Barbosa MM; Cadete-Leite A
    Neurobehav Toxicol Teratol; 1986; 8(5):481-5. PubMed ID: 3785510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlative microscopy of cerebellar Bergmann glial cells.
    Castejón OJ; Dailey ME; Apkarian RP; Castejón HV
    J Submicrosc Cytol Pathol; 2002 Apr; 34(2):131-42. PubMed ID: 12117273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum.
    Cesa R; Strata P
    Neuroscience; 2009 Sep; 162(3):624-32. PubMed ID: 19272433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Spontaneous Ataxic Mouse Mutant Tippy is Characterized by a Novel Purkinje Cell Morphogenesis and Degeneration Phenotype.
    Shih EK; Sekerková G; Ohtsuki G; Aldinger KA; Chizhikov VV; Hansel C; Mugnaini E; Millen KJ
    Cerebellum; 2015 Jun; 14(3):292-307. PubMed ID: 25626522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 6-Hydroxydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopic study.
    Mangold U; Sievers J; Berry M
    J Comp Neurol; 1984 Aug; 227(2):267-84. PubMed ID: 6432859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conventional and high resolution field emission scanning electron microscopy of vertebrate cerebellar parallel fiber-Purkinje spine synapses.
    Castejón OJ; Apkarian RP
    Cell Mol Biol (Noisy-le-grand); 1993 Dec; 39(8):863-73. PubMed ID: 8298435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model of long-term memory storage in the cerebellar cortex: a possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons.
    Kenyon GT
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14200-5. PubMed ID: 9391177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration.
    Roffler-Tarlov S; Beart PM; O'Gorman S; Sidman RL
    Brain Res; 1979 May; 168(1):75-95. PubMed ID: 455087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.