These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 37687038)
1. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Ali M; Bhardwaj P; Ishqi HM; Shahid M; Islam A Molecules; 2023 Aug; 28(17):. PubMed ID: 37687038 [TBL] [Abstract][Full Text] [Related]
2. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878 [TBL] [Abstract][Full Text] [Related]
3. Bacterial laccases: promising biological green tools for industrial applications. Guan ZB; Luo Q; Wang HR; Chen Y; Liao XR Cell Mol Life Sci; 2018 Oct; 75(19):3569-3592. PubMed ID: 30046841 [TBL] [Abstract][Full Text] [Related]
4. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. Cambria MT; Gullotto D; Garavaglia S; Cambria A J Biomol Struct Dyn; 2012; 30(1):89-101. PubMed ID: 22571435 [TBL] [Abstract][Full Text] [Related]
5. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930 [TBL] [Abstract][Full Text] [Related]
6. Simulating Substrate Recognition and Oxidation in Laccases: From Description to Design. Lucas MF; Monza E; Jørgensen LJ; Ernst HA; Piontek K; Bjerrum MJ; Martinez ÁT; Camarero S; Guallar V J Chem Theory Comput; 2017 Mar; 13(3):1462-1467. PubMed ID: 28187256 [TBL] [Abstract][Full Text] [Related]
7. Laccase engineering: from rational design to directed evolution. Mate DM; Alcalde M Biotechnol Adv; 2015; 33(1):25-40. PubMed ID: 25545886 [TBL] [Abstract][Full Text] [Related]
8. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261 [TBL] [Abstract][Full Text] [Related]
9. Beyond natural laccases: extension of their potential applications by protein engineering. Stanzione I; Pezzella C; Giardina P; Sannia G; Piscitelli A Appl Microbiol Biotechnol; 2020 Feb; 104(3):915-924. PubMed ID: 31834437 [TBL] [Abstract][Full Text] [Related]
10. Narrowing laccase substrate specificity using active site saturation mutagenesis. Gupta N; Farinas ET Comb Chem High Throughput Screen; 2009 Mar; 12(3):269-74. PubMed ID: 19275532 [TBL] [Abstract][Full Text] [Related]
11. Laccase engineering by rational and evolutionary design. Pardo I; Camarero S Cell Mol Life Sci; 2015 Mar; 72(5):897-910. PubMed ID: 25586560 [TBL] [Abstract][Full Text] [Related]
12. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703 [TBL] [Abstract][Full Text] [Related]
13. Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications. Mayolo-Deloisa K; González-González M; Rito-Palomares M Front Bioeng Biotechnol; 2020; 8():222. PubMed ID: 32266246 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Bertrand T; Jolivalt C; Briozzo P; Caminade E; Joly N; Madzak C; Mougin C Biochemistry; 2002 Jun; 41(23):7325-33. PubMed ID: 12044164 [TBL] [Abstract][Full Text] [Related]
15. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. Gunne M; Höppner A; Hagedoorn PL; Urlacher VB FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692 [TBL] [Abstract][Full Text] [Related]
16. Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. Dittmer NT; Gorman MJ; Kanost MR Insect Biochem Mol Biol; 2009 Sep; 39(9):596-606. PubMed ID: 19576986 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. Piontek K; Antorini M; Choinowski T J Biol Chem; 2002 Oct; 277(40):37663-9. PubMed ID: 12163489 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. Gunne M; Urlacher VB PLoS One; 2012; 7(12):e52360. PubMed ID: 23285009 [TBL] [Abstract][Full Text] [Related]
19. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Sitarz AK; Mikkelsen JD; Meyer AS Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436 [TBL] [Abstract][Full Text] [Related]