These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 37687189)

  • 21. The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal-organic framework DUT-98.
    Krause S; Bon V; Du H; Dunin-Borkowski RE; Stoeck U; Senkovska I; Kaskel S
    Beilstein J Nanotechnol; 2019; 10():1737-1744. PubMed ID: 31501745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation.
    Hu MY; He Q; Fan SJ; Wang ZC; Liu LY; Mu YJ; Peng Q; Zhu SF
    Nat Commun; 2018 Jan; 9(1):221. PubMed ID: 29335560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. YVO
    Kolesnikov IE; Kalinichev AA; Kurochkin MA; Golyeva EV; Kolesnikov EY; Kurochkin AV; Lähderanta E; Mikhailov MD
    Sci Rep; 2017 Dec; 7(1):18002. PubMed ID: 29269787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning the gate-opening pressure and particle size distribution of the switchable metal-organic framework DUT-8(Ni) by controlled nucleation in a micromixer.
    Miura H; Bon V; Senkovska I; Ehrling S; Watanabe S; Ohba M; Kaskel S
    Dalton Trans; 2017 Oct; 46(40):14002-14011. PubMed ID: 28976513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New synthetic routes towards MOF production at scale.
    Rubio-Martinez M; Avci-Camur C; Thornton AW; Imaz I; Maspoch D; Hill MR
    Chem Soc Rev; 2017 Jun; 46(11):3453-3480. PubMed ID: 28530737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring adsorption induced phase transitions in the pillared-layer type metal-organic framework DUT-8(Ni).
    Kavoosi N; Bon V; Senkovska I; Krause S; Atzori C; Bonino F; Pallmann J; Paasch S; Brunner E; Kaskel S
    Dalton Trans; 2017 Apr; 46(14):4685-4695. PubMed ID: 28332683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure refinement with SHELXL.
    Sheldrick GM
    Acta Crystallogr C Struct Chem; 2015 Jan; 71(Pt 1):3-8. PubMed ID: 25567568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal(II) complexes synthesized based on quinoline-2,3-dicarboxylate as electrocatalysts for the degradation of methyl orange.
    Gong Y; Zhang MM; Qin JB; Li J; Meng JP; Lin JH
    Dalton Trans; 2014 Jun; 43(22):8454-60. PubMed ID: 24741675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. catena-Poly[[[diaqua-copper(II)]-μ-quinoline-2,3-dicarboxyl-ato-κ(3)N,O(2):O(3)] monohydrate].
    Xia QH; Guo ZF; Liu L; Wang ZK; Li B
    Acta Crystallogr Sect E Struct Rep Online; 2012 Nov; 68(Pt 11):m1395. PubMed ID: 23284367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A homologous series of first-row transition-metal complexes of 2,2'-bipyridine and their ligand radical derivatives: trends in structure, magnetism, and bonding.
    Irwin M; Doyle LR; Krämer T; Herchel R; McGrady JE; Goicoechea JM
    Inorg Chem; 2012 Nov; 51(22):12301-12. PubMed ID: 23110751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.
    Stock N; Biswas S
    Chem Rev; 2012 Feb; 112(2):933-69. PubMed ID: 22098087
    [No Abstract]   [Full Text] [Related]  

  • 32. Lanthanide luminescence for biomedical analyses and imaging.
    Bünzli JC
    Chem Rev; 2010 May; 110(5):2729-55. PubMed ID: 20151630
    [No Abstract]   [Full Text] [Related]  

  • 33. Lanthanide luminescence for functional materials and bio-sciences.
    Eliseeva SV; Bünzli JC
    Chem Soc Rev; 2010 Jan; 39(1):189-227. PubMed ID: 20023849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates).
    Aebischer A; Gumy F; Bünzli JC
    Phys Chem Chem Phys; 2009 Mar; 11(9):1346-53. PubMed ID: 19224035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-dimensional transition-metal coordination polymers of 4,4'-bipyridine-N,N'-dioxide: 1D chains and 2D sheets.
    Jia J; Blake AJ; Champness NR; Hubberstey P; Wilson C; Schröder M
    Inorg Chem; 2008 Oct; 47(19):8652-64. PubMed ID: 18754659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms.
    Biradha K; Sarkar M; Rajput L
    Chem Commun (Camb); 2006 Oct; (40):4169-79. PubMed ID: 17031423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shedding light onto live molecular targets.
    Weissleder R; Ntziachristos V
    Nat Med; 2003 Jan; 9(1):123-8. PubMed ID: 12514725
    [No Abstract]   [Full Text] [Related]  

  • 38. The effect of pH on the dimensionality of coordination polymers.
    Pan L; Frydel T; Sander MB; Huang X; Li J
    Inorg Chem; 2001 Mar; 40(6):1271-83. PubMed ID: 11300829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Series of Novel 3D Coordination Polymers Based on the Quinoline-2,4-dicarboxylate Building Block and Lanthanide(III) Ions-Temperature Dependence Investigations.
    Vlasyuk D; Łyszczek R; Mazur L; Pladzyk A; Hnatejko Z; Woźny P
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties.
    Kuznetsova A; Matveevskaya V; Pavlov D; Yakunenkov A; Potapov A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]     [New Search]
    of 2.