These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 37687368)

  • 1. CRISPR/Cas Technology Revolutionizes Crop Breeding.
    Tang Q; Wang X; Jin X; Peng J; Zhang H; Wang Y
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms.
    Wang Y; Tang Q; Pu L; Zhang H; Li X
    Front Plant Sci; 2022; 13():1049803. PubMed ID: 36589095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of CRISPR-Cas in agriculture and plant biotechnology.
    Zhu H; Li C; Gao C
    Nat Rev Mol Cell Biol; 2020 Nov; 21(11):661-677. PubMed ID: 32973356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-Generation Breeding Strategies for Climate-Ready Crops.
    Razzaq A; Kaur P; Akhter N; Wani SH; Saleem F
    Front Plant Sci; 2021; 12():620420. PubMed ID: 34367194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops.
    Li Y; Wu X; Zhang Y; Zhang Q
    Front Genome Ed; 2022; 4():987817. PubMed ID: 36188128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Crop Breeding Through Precision Genome Editing.
    Nerkar G; Devarumath S; Purankar M; Kumar A; Valarmathi R; Devarumath R; Appunu C
    Front Genet; 2022; 13():880195. PubMed ID: 35910205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture.
    Rajput M; Choudhary K; Kumar M; Vivekanand V; Chawade A; Ortiz R; Pareek N
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security.
    Ahmad M
    Front Plant Sci; 2023; 14():1133036. PubMed ID: 36993865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World.
    Hamdan MF; Mohd Noor SN; Abd-Aziz N; Pua TL; Tan BC
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger.
    Ahmad S; Tang L; Shahzad R; Mawia AM; Rao GS; Jamil S; Wei C; Sheng Z; Shao G; Wei X; Hu P; Mahfouz MM; Hu S; Tang S
    J Agric Food Chem; 2021 Aug; 69(30):8307-8323. PubMed ID: 34288688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.