BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37687422)

  • 1. Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods.
    Pycka S; Roman K
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Design of Wood/Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based Decision-Making Algorithm.
    Singh T; Pattnaik P; Aherwar A; Ranakoti L; Dogossy G; Lendvai L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and self-assembly nucleating agent.
    Lv C; Luo S; Guo W; Chang L
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127265. PubMed ID: 37802453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Concise Review of the Components and Properties of Wood-Plastic Composites.
    Mitaľová Z; Mitaľ D; Berladir K
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Properties' Enhancement of PLA-Starch-Based Polymer Composite Using Sucrose.
    Massijaya SY; Lubis MAR; Nissa RC; Nurhamiyah Y; Kusumaningrum WB; Marlina R; Ningrum RS; Sutiawan J; Hidayat I; Kusumah SS; Karlinasari L; Hartono R
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Mechanical, Thermal and Rheological Properties of Hop, Hemp and Wood Fiber Plastic Composites.
    Talcott S; Uptmor B; McDonald AG
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esterified Lignin from Construction and Demolition Waste (CDW) as a Versatile Additive for Polylactic-Acid (PLA) Composites-The Effect of Artificial Weathering on its Performance.
    Anugwom I; Lahtela V; Hedenström M; Kiljunen S; Kärki T; Kallioinen-Mänttäri M
    Glob Chall; 2022 Aug; 6(8):2100137. PubMed ID: 35958830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications.
    Ilyas RA; Sapuan SM; Harussani MM; Hakimi MYAY; Haziq MZM; Atikah MSN; Asyraf MRM; Ishak MR; Razman MR; Nurazzi NM; Norrrahim MNF; Abral H; Asrofi M
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLA Biocomposites: Evaluation of Resistance to Mold.
    Borysiuk P; Krajewski K; Auriga A; Auriga R; Betlej I; Rybak K; Nowacka M; Boruszewski P
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Core.
    Ayrilmis N; Nagarajan R; Kuzman MK
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33297442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils.
    Wang Q; Ji C; Sun J; Zhu Q; Liu J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wood-PHA Composites: Mapping Opportunities.
    Vandi LJ; Chan CM; Werker A; Richardson D; Laycock B; Pratt S
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports.
    Wu Y; Gao X; Wu J; Zhou T; Nguyen TT; Wang Y
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites.
    Ranakoti L; Gangil B; Mishra SK; Singh T; Sharma S; Ilyas RA; El-Khatib S
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Coupling Agent and Thermoplastic on the Interfacial Bond Strength and the Mechanical Properties of Oriented Wood Strand-Thermoplastic Composites.
    Shen Z; Ye Z; Li K; Qi C
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire Behavior of Wood-Based Composite Materials.
    Renner JS; Mensah RA; Jiang L; Xu Q; Das O; Berto F
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and Sliding Wear Properties of Wood Waste-Filled Poly(Lactic Acid) Biocomposites.
    Singh T; Patnaik A; Ranakoti L; Dogossy G; Lendvai L
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Attribute Decision Making: Parametric Optimization and Modeling of the FDM Manufacturing Process Using PLA/Wood Biocomposites.
    Morvayová A; Contuzzi N; Fabbiano L; Casalino G
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood-plastic composites as promising green-composites for automotive industries!
    Ashori A
    Bioresour Technol; 2008 Jul; 99(11):4661-7. PubMed ID: 18068352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(lactic acid)/Poly(3-hydroxybutyrate) Biocomposites with Differently Treated Cellulose Fibers.
    Frone AN; Ghiurea M; Nicolae CA; Gabor AR; Badila S; Panaitescu DM
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.