These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 37687607)

  • 1. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Scale Dispersion Engineering on Biomass-Derived Materials for Ultra-Wideband and Wide-Angle Microwave Absorption.
    Tan R; Liu Y; Li W; Zhou J; Chen P; Zavabeti A; Zeng H; Yao Z
    Small Methods; 2024 Mar; ():e2301772. PubMed ID: 38513234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing an electromagnetic wave absorber for bi-anisotropic metasurfaces based on toroidal modes.
    Aghdasinia S; Allahverdizadeh H; Afkari E; Ahmadpour B; Bemani M
    Sci Rep; 2024 Apr; 14(1):8783. PubMed ID: 38627473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami metamaterials for ultra-wideband and large-depth reflection modulation.
    Song Z; Zhu JF; Wang X; Zhang R; Min P; Cao W; He Y; Han J; Wang T; Zhu J; Wu L; Qiu CW
    Nat Commun; 2024 Apr; 15(1):3181. PubMed ID: 38609351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE-polarized waves.
    Li T; Chu Z; Han Y; Yan M; Li Y; Qu S; Wang J; Feng C; Li L
    Opt Express; 2023 Nov; 31(23):37882-37891. PubMed ID: 38017908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Wideband Vertical Transition in Coplanar Stripline for Ultra-High-Speed Digital Interfaces.
    Kim MJ; Lee JS; Min BC; Choi JS; Kumar S; Choi HC; Kim KW
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse design of metasurfaces with customized transmission characteristics of frequency band based on generative adversarial networks.
    Wang HP; Cao DM; Pang XY; Zhang XH; Wang SY; Hou WY; Nie CC; Li YB
    Opt Express; 2023 Nov; 31(23):37763-37777. PubMed ID: 38017899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global rigorous coupled wave analysis for design of multilayer metasurface absorbers.
    Wang L; Fang D; Jin H; Li J
    Opt Express; 2023 Nov; 31(24):40270-40284. PubMed ID: 38041332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth extension of the Tonpilz transducer using high-order longitudinal vibrations.
    Ji B; Lan Y; Qiao G; Wang M
    J Acoust Soc Am; 2023 Dec; 154(6):3709-3725. PubMed ID: 38088746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-wideband terahertz absorber based on graphene modulation: retraction.
    Li X; Feng G; Lin S
    Appl Opt; 2021 Oct; 60(30):9379. PubMed ID: 34807075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties.
    Zheng R; Yi Y; Song Q; Yi Z; Yi Y; Cheng S; Zhang J; Tang C; Sun T; Zeng Q
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent and Ultra-Thin Flexible Checkerboard Metasurface for Radar-Infrared Bi-Stealth.
    Chang Q; Ji J; Chen K; Wu W; Ma Y
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review.
    Rajak DK; Wagh PH; Linul E
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Wideband Electromagnetic Composite Absorber Based on Pixelated Metasurface with Optimization Algorithm.
    Lee C; Kim K; Park P; Jang Y; Jo J; Choi T; Lee H
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687607
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.