These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37687608)

  • 1. A Thermo-Electro-Viscoelastic Model for Dielectric Elastomers.
    Qin B; Zhong Z; Zhang TY
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On nonlinear thermo-electro-elasticity.
    Mehnert M; Hossain M; Steinmann P
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160170. PubMed ID: 27436985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model.
    Nguyen T; Li J; Sun L; Tran D; Xuan F
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Simulation of Viscous Electro-Active Polymers.
    Vogel F; Göktepe S; Steinmann P; Kuhl E
    Eur J Mech A Solids; 2014 Nov; 48():112-128. PubMed ID: 25267881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Prestrain on the Actuation Characteristics of Dielectric Elastomers.
    Kumar M; Sharma A; Hait S; Wießner S; Heinrich G; Arief I; Naskar K; Stöckelhuber KW; Das A
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electro-actuation in Dielectric Elastomers: The Nonlinear Effect of Free Ions.
    Zheng B; Man X; Andelman D; Doi M
    ACS Macro Lett; 2021 Apr; 10(4):498-502. PubMed ID: 35549225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Trigger Thermo-Electro-Mechanical Soft Actuators under Large Deformations.
    Yarali E; Noroozi R; Yousefi A; Bodaghi M; Baghani M
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32102212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-Electro-Mechanical Characterization of PDMS-Based Dielectric Elastomer Actuators.
    Katzer K; Kanan A; Pfeil S; Grellmann H; Gerlach G; Kaliske M; Cherif C; Zimmermann M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Effect of Material Viscoelasticity on the Dielectric Permittivity of Deformed Elastomers.
    Zheng X; Zhou J
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into the electromechanical properties of dielectric elastomers subjected to pre-stressing.
    Jiang L; Betts A; Kennedy D; Jerrams S
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():754-760. PubMed ID: 25687005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-Electro-Mechanical Simulation of Electro-Active Composites.
    Kanan A; Vasilev A; Breitkopf C; Kaliske M
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat Build-Up and Rolling Resistance Analysis of a Solid Tire: Experimental Observation and Numerical Simulation with Thermo-Mechanical Coupling Method.
    He H; Liu J; Zhang Y; Han X; Mars WV; Zhang L; Li F
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Electro-Thermo-Mechanical Coupling Stress on Top-Cooled E-Mode AlGaN/GaN HEMT.
    Jiang J; Chen Q; Hu S; Shi Y; He Z; Huang Y; Hui C; Chen Y; Wu H; Lu G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model.
    Fontenele FF; Bouklas N
    Acta Biomater; 2023 Jun; 163():78-90. PubMed ID: 35835288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Elastomers with High Dielectric Permittivity for Actuators, Sensors, and Beyond.
    Sheima Y; von Szczepanski J; Danner PM; Künniger T; Remhof A; Frauenrath H; Opris DM
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40257-40265. PubMed ID: 35998318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter Identification and Validation of Shape-Memory Polymers within the Framework of Finite Strain Viscoelasticity.
    Ghobadi E; Shutov A; Steeb H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Molecular Mechanism for Understanding the Actuated Strain of Dielectric Elastomers and Their Impacts.
    Wu W; Wang ZL; Zhang L
    Macromol Rapid Commun; 2023 Jan; 44(1):e2200315. PubMed ID: 35705516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.