These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37687683)
1. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption. Xia R; Li Y; You S; Lu C; Xu W; Ni Y Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687683 [TBL] [Abstract][Full Text] [Related]
2. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning. Ji S; Park J; Lim H Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661 [TBL] [Abstract][Full Text] [Related]
3. Broadband Enhancement of Anti-reflectivity for a High Angle of Incidence Using Nanocone Geometry. Ji S; Yun YS; Lee J; Jeon DJ; Kim N; Lim H; Yeo JS ACS Appl Mater Interfaces; 2022 Apr; 14(16):18825-18834. PubMed ID: 35427107 [TBL] [Abstract][Full Text] [Related]
4. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S; Song K; Nguyen TB; Kim N; Lim H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953 [TBL] [Abstract][Full Text] [Related]
5. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink. Yeo CI; Song YM; Jang SJ; Lee YT Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253 [TBL] [Abstract][Full Text] [Related]
7. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection. Zhang C; Yi P; Peng L; Ni J Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259 [TBL] [Abstract][Full Text] [Related]
8. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430 [TBL] [Abstract][Full Text] [Related]
9. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D; Bae J; Hong S; Yang H; Kim YB Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196 [TBL] [Abstract][Full Text] [Related]
10. Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications. Behera S; Fry PW; Francis H; Jin CY; Hopkinson M Sci Rep; 2020 Apr; 10(1):6269. PubMed ID: 32286418 [TBL] [Abstract][Full Text] [Related]
11. Broadband responsivity enhancement of Si photodiodes by a plasmonic antireflection bilayer. Park J; Kang IS; Sim G; Kim TH; Lee JK Opt Express; 2021 Aug; 29(17):26634-26644. PubMed ID: 34615094 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712 [TBL] [Abstract][Full Text] [Related]
14. Perforating domed plasmonic films for broadband and omnidirectional antireflection. Ai B; Gu P; Möhwald H; Zhang G Nanoscale; 2016 Aug; 8(34):15473-8. PubMed ID: 27510646 [TBL] [Abstract][Full Text] [Related]
15. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Wu F; Wu X; Xiao S; Liu G; Li H Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651 [TBL] [Abstract][Full Text] [Related]
16. Broadband and wide-angle antireflection realized by multireflection effect in a micro-∧-shape array. Zheng B; Huang S; Zhai C; Wang C; Zhu M; Chen Y Appl Opt; 2013 Aug; 52(23):5585-90. PubMed ID: 23938405 [TBL] [Abstract][Full Text] [Related]
17. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications. Hakim ML; Alam T; Islam MS; Salaheldeen M M; Almalki SHA; Baharuddin MH; Alsaif H; Islam MT Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329652 [TBL] [Abstract][Full Text] [Related]
18. Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal. Shen S; Tang J; Yu J; Zhou L; Zhou Y Opt Express; 2019 Sep; 27(18):24989-24999. PubMed ID: 31510379 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface. Leem JW; Yu JS J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159 [TBL] [Abstract][Full Text] [Related]
20. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting. Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]