BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37687714)

  • 1. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography.
    Liu Z; Liu W; Chen Q; Hu Y; Li Y; Zheng X; Fang D; Liu H; Sun C
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation time constant based optical coherence elastography.
    Zhang D; Li C; Huang Z
    J Biophotonics; 2020 Jul; 13(7):e201960233. PubMed ID: 32166913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
    Zhu J; He X; Chen Z
    Appl Spectrosc Rev; 2019; 54(6):457-481. PubMed ID: 31749516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications.
    Liu HC; Kijanka P; Urban MW
    J Biophotonics; 2020 Mar; 13(3):e201960134. PubMed ID: 31872545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic response (VisR) imaging for assessment of viscoelasticity in Voigt materials.
    Selzo MR; Gallippi CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2488-500. PubMed ID: 24297015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model.
    Selzo MR; Moore CJ; Hossain MM; Palmeri ML; Gallippi CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1276-87. PubMed ID: 27046848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues.
    Wang Y; Shemonski ND; Adie SG; Boppart SA; Insana MF
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():117-20. PubMed ID: 24109638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-D Ultrasonic Array-Based Optical Coherence Elastography.
    Kang H; Qian X; Chen R; Wodnicki R; Sun Y; Li R; Li Y; Shung KK; Chen Z; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1096-1104. PubMed ID: 33095699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant acoustic radiation force optical coherence elastography.
    Qi W; Li R; Ma T; Li J; Kirk Shung K; Zhou Q; Chen Z
    Appl Phys Lett; 2013 Sep; 103(10):103704. PubMed ID: 24086090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D mapping of elastic modulus using shear wave optical micro-elastography.
    Zhu J; Qi L; Miao Y; Ma T; Dai C; Qu Y; He Y; Gao Y; Zhou Q; Chen Z
    Sci Rep; 2016 Oct; 6():35499. PubMed ID: 27762276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric imaging of viscoelasticity using optical coherence elastography.
    Wijesinghe P; McLaughlin RA; Sampson DD; Kennedy BF
    Phys Med Biol; 2015 Mar; 60(6):2293-307. PubMed ID: 25715798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model.
    Han Z; Singh M; Aglyamov SR; Liu CH; Nair A; Raghunathan R; Wu C; Li J; Larin KV
    J Biomed Opt; 2016 Sep; 21(9):90504. PubMed ID: 27653931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic radiation force-induced longitudinal shear wave for ultrasound-based viscoelastic evaluation.
    Liu HC; Lee HK; Urban MW; Zhou Q; Kijanka P
    Ultrasonics; 2024 Jun; 142():107389. PubMed ID: 38924960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: validation and applications in plantar soft tissue assessment.
    Tecse A; Romero SE; Naemi R; Castaneda B
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 36996846
    [No Abstract]   [Full Text] [Related]  

  • 18. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy.
    Ambekar YS; Singh M; Zhang J; Nair A; Aglyamov SR; Scarcelli G; Larin KV
    Biomed Opt Express; 2020 Apr; 11(4):2041-2051. PubMed ID: 32341865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic properties' characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE).
    Zhang Y; Zhou K; Feng Z; Feng K; Ji Y; Li C; Huang Z
    J Biophotonics; 2022 Jan; 15(1):e202100253. PubMed ID: 34713598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.