These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37687716)

  • 1. Experimental Study of Shear Performance of High-Strength Concrete Deep Beams with Longitudinal Reinforcement with Anchor Plate.
    Li SS; Jin TC; Zheng LA; Zhang GY; Li HM; Chen AJ; Xie W
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study and Calculation Methods of Shear Capacity for High-Strength Reinforced Concrete Full-Scale Deep Beams.
    Li S; Wu Z; Zhang J; Xie W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Shear Capacity of High Strength Reinforcement Concrete Deep Beams with Small Shear Span-Depth Ratio.
    Zhang JH; Li SS; Xie W; Guo YD
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Shear Model for Steel-Fiber-Reinforced High-Strength Concrete Corbels with Welded-Anchorage Longitudinal Reinforcement.
    Li SS; Peng D; Wang H; Zhang FJ; Li HM; Xie YJ; Chen AJ; Xie W
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement.
    Zhao J; Liang J; Chu L; Shen F
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30208634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation on Shear Capacity of Steel-Fiber-Reinforced High-Strength Concrete Corbels.
    Li SS; Zheng JY; Zhang JH; Li HM; Guo GQ; Chen AJ; Xie W
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear Behavior of Hybrid Fiber Reinforced Concrete Deep Beams.
    Ma K; Qi T; Liu H; Wang H
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30340380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing and Prediction of Shear Performance for Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams without Web Reinforcements.
    Li X; Li C; Zhao M; Yang H; Zhou S
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Calculation Method for the Shear Capacity of a UHPC Beam with and without Web Reinforcement.
    Gao C; Jiang H; Zhang G; Chen L; Hu Y
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement.
    Yavas A; Goker CO
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32225047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Steel and Basalt Fibers on the Shear Behavior of Double-Span Fiber Reinforced Concrete Beams.
    Krassowska J; Kosior-Kazberuk M
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear Capacity Evaluation of the Recycled Concrete Beam.
    Yang Q; Peng X; Sun Y
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Analysis of Glass Fiber-Reinforced Polymer-(GFRP) Reinforced Continuous Concrete Beams.
    Ahmad H; Elnemr A; Ali N; Hussain Q; Chaiyasarn K; Joyklad P
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings.
    Smarzewski P
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; an Experimental Study.
    Chalioris CE; Kosmidou PK; Karayannis CG
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams.
    El-Mandouh MA; Kaloop MR; Hu JW; Abd El-Maula AS
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Theoretical Studies on the Shear Performance of Concrete Beams Reinforced with Fiber-Reinforced Polymer Stirrups.
    Zhao J; Bao X; Yang S; Wang Z; He H; Xu X
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation on the behavior of fly-ash based geopolymer reinforced concrete beams strengthened with CFRP.
    Eisa AS; Ahmed MH; Demjan I; Katunský D
    Heliyon; 2023 Jul; 9(7):e17674. PubMed ID: 37539208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear Strengthening of Deep T-Section RC Beams with CFRP Bars.
    Jing ZN; Liu RG; Xie GH; Liu D
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limit Equilibrium Method-based Shear Strength Prediction for Corroded Reinforced Concrete Beam with Inclined Bars.
    Ma Y; Lu B; Guo Z; Wang L; Chen H; Zhang J
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.