These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 37687758)

  • 21. Circularity of Lithium-Ion Battery Materials in Electric Vehicles.
    Dunn J; Slattery M; Kendall A; Ambrose H; Shen S
    Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A reflection on lithium-ion battery cathode chemistry.
    Manthiram A
    Nat Commun; 2020 Mar; 11(1):1550. PubMed ID: 32214093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries.
    Liu T; Vivek JP; Zhao EW; Lei J; Garcia-Araez N; Grey CP
    Chem Rev; 2020 Jul; 120(14):6558-6625. PubMed ID: 32090540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is TiO
    Fehse M; Ventosa E
    Chempluschem; 2015 May; 80(5):785-795. PubMed ID: 31973331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Aluminum-Ion Battery: A Sustainable and Seminal Concept?
    Leisegang T; Meutzner F; Zschornak M; Münchgesang W; Schmid R; Nestler T; Eremin RA; Kabanov AA; Blatov VA; Meyer DC
    Front Chem; 2019; 7():268. PubMed ID: 31119122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery.
    Shen X; Li Y; Qian T; Liu J; Zhou J; Yan C; Goodenough JB
    Nat Commun; 2019 Feb; 10(1):900. PubMed ID: 30796214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium intercalation into bilayer graphene.
    Ji K; Han J; Hirata A; Fujita T; Shen Y; Ning S; Liu P; Kashani H; Tian Y; Ito Y; Fujita JI; Oyama Y
    Nat Commun; 2019 Jan; 10(1):275. PubMed ID: 30655526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrothermal Synthesis of Cellulose-Derived Carbon Nanospheres from Corn Straw as Anode Materials for Lithium ion Batteries.
    Yu K; Wang J; Song K; Wang X; Liang C; Dou Y
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30642034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 30 Years of Lithium-Ion Batteries.
    Li M; Lu J; Chen Z; Amine K
    Adv Mater; 2018 Jun; ():e1800561. PubMed ID: 29904941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding ageing in Li-ion batteries: a chemical issue.
    Palacín MR
    Chem Soc Rev; 2018 Jul; 47(13):4924-4933. PubMed ID: 29745954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.
    Tian C; Lin F; Doeff MM
    Acc Chem Res; 2018 Jan; 51(1):89-96. PubMed ID: 29257667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.
    Nayak PK; Yang L; Brehm W; Adelhelm P
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):102-120. PubMed ID: 28627780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters.
    Jiang F; Peng P
    Sci Rep; 2016 Sep; 6():32639. PubMed ID: 27599870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.
    Leng F; Tan CM; Pecht M
    Sci Rep; 2015 Aug; 5():12967. PubMed ID: 26245922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium-sulfur batteries: progress and prospects.
    Manthiram A; Chung SH; Zu C
    Adv Mater; 2015 Mar; 27(12):1980-2006. PubMed ID: 25688969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Li-O2 and Li-S batteries with high energy storage.
    Bruce PG; Freunberger SA; Hardwick LJ; Tarascon JM
    Nat Mater; 2011 Dec; 11(1):19-29. PubMed ID: 22169914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries.
    Yoo E; Kim J; Hosono E; Zhou HS; Kudo T; Honma I
    Nano Lett; 2008 Aug; 8(8):2277-82. PubMed ID: 18651781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.