These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37687942)

  • 21. Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures.
    Cardenas JD; Gutierrez CA; Aguilar-Ponce R
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hand Gesture Recognition Using FSK Radar Sensors.
    Yang K; Kim M; Jung Y; Lee S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific Radar Recognition Based on Characteristics of Emitted Radio Waveforms Using Convolutional Neural Networks.
    Matuszewski J; Pietrow D
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radar Emitter Signal Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism.
    Wu B; Yuan S; Li P; Jing Z; Huang S; Zhao Y
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network.
    Jiang X; Zhang Y; Yang Q; Deng B; Wang H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SAR ATR for Limited Training Data Using DS-AE Network.
    Park JH; Seo SM; Yoo JH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Radar Human Activity Classification Using Synthetic Data with Image Transformation.
    Hernangómez R; Visentin T; Servadei L; Khodabakhshandeh H; Stańczak S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of human body motions using an ultra-wideband pulse radar.
    Cho HS; Park YJ
    Technol Health Care; 2022; 30(1):93-104. PubMed ID: 34092669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks.
    Park D; Lee S; Park S; Kwak N
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LPI Radar Waveform Recognition Based on Neural Architecture Search.
    Ma Z; Yu W; Zhang P; Huang Z; Lin A; Xia Y
    Comput Intell Neurosci; 2022; 2022():4628481. PubMed ID: 35111210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy.
    Kondo K; Hasegawa T
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A lightweight hybrid vision transformer network for radar-based human activity recognition.
    Huan S; Wang Z; Wang X; Wu L; Yang X; Huang H; Dai GE
    Sci Rep; 2023 Oct; 13(1):17996. PubMed ID: 37865672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning-Based Classification of Human Behaviors and Falls in Restroom via Dual Doppler Radar Measurements.
    Saho K; Hayashi S; Tsuyama M; Meng L; Masugi M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms.
    Li Z; Le Kernec J; Abbasi Q; Fioranelli F; Yang S; Romain O
    Sci Rep; 2023 Mar; 13(1):3473. PubMed ID: 36859571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A New Method for Traffic Participant Recognition Using Doppler Radar Signature and Convolutional Neural Networks.
    Ślesicki B; Ślesicka A
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TARF: Technology-Agnostic RF Sensing for Human Activity Recognition.
    Yang C; Wang X; Mao S
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):636-647. PubMed ID: 35594224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient FPGA Implementation of Convolutional Neural Networks and Long Short-Term Memory for Radar Emitter Signal Recognition.
    Wu B; Wu X; Li P; Gao Y; Si J; Al-Dhahir N
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.