These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37688066)

  • 1. Spatially Explicit Modeling of Anthropogenic Heat Intensity in Beijing Center Area: An Investigation of Driving Factors with Urban Spatial Forms.
    Yang M; Cao S; Zhang D
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appraising regional anthropogenic heat flux using high spatial resolution NTL and POI data: A case study in the Beijing-Tianjin-Hebei region, China.
    Wang Y; Hu D; Yu C; Di Y; Wang S; Liu M
    Environ Pollut; 2022 Jan; 292(Pt A):118359. PubMed ID: 34648842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping China's time-series anthropogenic heat flux with inventory method and multi-source remotely sensed data.
    Wang S; Hu D; Yu C; Chen S; Di Y
    Sci Total Environ; 2020 Sep; 734():139457. PubMed ID: 32464384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of anthropogenic heat emissions in urban Taiwan and their spatial patterns.
    Koralegedara SB; Lin CY; Sheng YF; Kuo CH
    Environ Pollut; 2016 Aug; 215():84-95. PubMed ID: 27179327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data.
    Chen Q; Yang X; Ouyang Z; Zhao N; Jiang Q; Ye T; Qi J; Yue W
    Environ Pollut; 2020 Nov; 266(Pt 1):115183. PubMed ID: 32673933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing-Tianjin-Hebei region in China.
    Chen S; Hu D; Wong MS; Ren H; Cao S; Yu C; Ho HC
    Environ Pollut; 2019 Jun; 249():923-931. PubMed ID: 30965544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial heterogeneity of first flowering date in Beijing's main urban area and its response to urban thermal environment.
    Xing X; Zhang M; Li K; Hao P; Dong L
    Int J Biometeorol; 2022 Oct; 66(10):1929-1954. PubMed ID: 36048247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of anthropogenic heat with different modeling ideas and its driving effect on urban heat islands in seven typical Chinese cities.
    Qian J; Meng Q; Zhang L; Schlink U; Hu X; Gao J
    Sci Total Environ; 2023 Aug; 886():163989. PubMed ID: 37164103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved anthropogenic heat flux model for fine spatiotemporal information in Southeast China.
    Qian J; Meng Q; Zhang L; Hu D; Hu X; Liu W
    Environ Pollut; 2022 Apr; 299():118917. PubMed ID: 35101557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal patterns and driving forces of remotely sensed urban agglomeration heat islands in South China.
    Geng S; Yang L; Sun Z; Wang Z; Qian J; Jiang C; Wen M
    Sci Total Environ; 2021 Dec; 800():149499. PubMed ID: 34426306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China.
    Lu Y; Yue W; Huang Y
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial resolution of anthropogenic heat fluxes into urban aquifers.
    Benz SA; Bayer P; Menberg K; Jung S; Blum P
    Sci Total Environ; 2015 Aug; 524-525():427-39. PubMed ID: 25930242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.
    Chakraborty SD; Kant Y; Mitra D
    J Environ Manage; 2015 Jan; 148():143-52. PubMed ID: 24360191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing anthropogenic heat flux of public cloud data centers: current and future trends.
    Baniata H; Mahmood S; Kertesz A
    PeerJ Comput Sci; 2021; 7():e478. PubMed ID: 34013027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving forces of UHI changes in China's major cities from the perspective of land surface energy balance.
    Hou H; Su H; Liu K; Li X; Chen S; Wang W; Lin J
    Sci Total Environ; 2022 Jul; 829():154710. PubMed ID: 35331766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series.
    Jin K; Wang F; Chen D; Liu H; Ding W; Shi S
    Sci Data; 2019 Jul; 6(1):139. PubMed ID: 31366934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are there differences in the forces driving the conversion of different non-urban lands into urban use? A case study of Beijing.
    Huang D; Zhu S; Liu T
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6414-6432. PubMed ID: 34453248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of urbanization on direct runoff characteristics in urban functional zones.
    Li C; Liu M; Hu Y; Shi T; Qu X; Walter MT
    Sci Total Environ; 2018 Dec; 643():301-311. PubMed ID: 29940442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification.
    Quan J
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural-anthropogenic environment interactively causes the surface urban heat island intensity variations in global climate zones.
    Yuan Y; Li C; Geng X; Yu Z; Fan Z; Wang X
    Environ Int; 2022 Dec; 170():107574. PubMed ID: 36252437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.