These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 37688086)
1. Multiscale Feature-Learning with a Unified Model for Hyperspectral Image Classification. Arshad T; Zhang J; Ullah I; Ghadi YY; Alfarraj O; Gafar A Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688086 [TBL] [Abstract][Full Text] [Related]
2. Microscopic Hyperspectral Image Classification Based on Fusion Transformer With Parallel CNN. Zeng W; Li W; Zhang M; Wang H; Lv M; Yang Y; Tao R IEEE J Biomed Health Inform; 2023 Jun; 27(6):2910-2921. PubMed ID: 37028325 [TBL] [Abstract][Full Text] [Related]
3. GroupFormer for hyperspectral image classification through group attention. Khan R; Arshad T; Ma X; Zhu H; Wang C; Khan J; Khan ZU; Khan SU Sci Rep; 2024 Oct; 14(1):23879. PubMed ID: 39396096 [TBL] [Abstract][Full Text] [Related]
4. Improved deep learning image classification algorithm based on Swin Transformer V2. Wei J; Chen J; Wang Y; Luo H; Li W PeerJ Comput Sci; 2023; 9():e1665. PubMed ID: 38077595 [TBL] [Abstract][Full Text] [Related]
5. A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network. Li M; Lu Y; Cao S; Wang X; Xie S Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991898 [TBL] [Abstract][Full Text] [Related]
6. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
7. SSTU: Swin-Spectral Transformer U-Net for hyperspectral whole slide image reconstruction. Wang Y; Gu Y; Nanding A Comput Med Imaging Graph; 2024 Jun; 114():102367. PubMed ID: 38522221 [TBL] [Abstract][Full Text] [Related]
8. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module. Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584 [TBL] [Abstract][Full Text] [Related]
10. Symmetric All Convolutional Neural-Network-Based Unsupervised Feature Extraction for Hyperspectral Images Classification. Zhang M; Gong M; He H; Zhu S IEEE Trans Cybern; 2022 May; 52(5):2981-2993. PubMed ID: 33027014 [TBL] [Abstract][Full Text] [Related]
11. Learning Deep Hierarchical Spatial-Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN. Feng F; Wang S; Wang C; Zhang J Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795511 [TBL] [Abstract][Full Text] [Related]
12. MR-Trans: MultiResolution Transformer for medical image segmentation. Zou Y; Ge Y; Zhao L; Li W Comput Biol Med; 2023 Oct; 165():107456. PubMed ID: 37696179 [TBL] [Abstract][Full Text] [Related]
13. Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial-Spectral Attention 3DCNN and a Transformer. Wang T; Xu Z; Hu H; Xu H; Zhao Y; Mao X Molecules; 2023 Sep; 28(17):. PubMed ID: 37687257 [TBL] [Abstract][Full Text] [Related]
14. ST-Unet: Swin Transformer boosted U-Net with Cross-Layer Feature Enhancement for medical image segmentation. Zhang J; Qin Q; Ye Q; Ruan T Comput Biol Med; 2023 Feb; 153():106516. PubMed ID: 36628914 [TBL] [Abstract][Full Text] [Related]
15. Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation. Yi X; Zhang H; Wang Y; Guo S; Wu J; Fan C Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015990 [TBL] [Abstract][Full Text] [Related]
16. Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification. Dang L; Weng L; Dong W; Li S; Hou Y Comput Intell Neurosci; 2022; 2022():7071485. PubMed ID: 35795754 [TBL] [Abstract][Full Text] [Related]
17. A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification. Hu X; Yang W; Wen H; Liu Y; Peng Y Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802533 [TBL] [Abstract][Full Text] [Related]
18. A Joint Network of Edge-Aware and Spectral-Spatial Feature Learning for Hyperspectral Image Classification. Zheng J; Sun Y; Hao Y; Qin S; Yang C; Li J; Yu X Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066113 [TBL] [Abstract][Full Text] [Related]
19. Advancing Hyperspectral Image Analysis with CTNet: An Approach with the Fusion of Spatial and Spectral Features. Yadav DP; Kumar D; Jalal AS; Sharma B; Webber JL; Mehbodniya A Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544278 [TBL] [Abstract][Full Text] [Related]
20. Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification. Zhou Y; Wei Y IEEE Trans Cybern; 2016 Jul; 46(7):1667-78. PubMed ID: 26241988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]