These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37688408)

  • 1. Artificial neural network-based shelf life prediction approach in the food storage process: A review.
    Shi C; Zhao Z; Jia Z; Hou M; Yang X; Ying X; Ji Z
    Crit Rev Food Sci Nutr; 2023 Sep; ():1-16. PubMed ID: 37688408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive study on applications of artificial neural network in food process modeling.
    Bhagya Raj GVS; Dash KK
    Crit Rev Food Sci Nutr; 2022; 62(10):2756-2783. PubMed ID: 33327740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis.
    Zhang Y; Zhu D; Ren X; Shen Y; Cao X; Liu H; Li J
    Food Chem; 2022 Nov; 394():133526. PubMed ID: 35749881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of artificial neural network for predicting the performance of CO
    Vo Thanh H; Sugai Y; Sasaki K
    Sci Rep; 2020 Oct; 10(1):18204. PubMed ID: 33097766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP; Gupta S; Kumar A; Shukla SP
    Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of storage time of yogurt with artificial neural network modeling.
    Sofu A; Ekinci FY
    J Dairy Sci; 2007 Jul; 90(7):3118-25. PubMed ID: 17582093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of storage time in different seafood based on color values with artificial neural network modeling.
    Genç İY
    J Food Sci Technol; 2022 Jun; 59(6):2501-2509. PubMed ID: 35602444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of kinetic and connectionist modeling for shelf-life prediction of Basundi mix.
    Ruhil AP; Singh RR; Jain DK; Patel AA; Patil GR
    J Food Sci Technol; 2011 Apr; 48(2):204-10. PubMed ID: 23572735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.
    Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations.
    Arhami M; Kamali N; Rajabi MM
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.
    Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D
    Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models.
    Mohammed M; Munir M; Aljabr A
    Foods; 2022 Jun; 11(11):. PubMed ID: 35681416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and wastewater quality prediction: current trends and challenges in the implementation of artificial neural network.
    Jadhav AR; Pathak PD; Raut RY
    Environ Monit Assess; 2023 Jan; 195(2):321. PubMed ID: 36689041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical Modeling and Optimizing of
    Arab MM; Yadollahi A; Ahmadi H; Eftekhari M; Maleki M
    Front Plant Sci; 2017; 8():1853. PubMed ID: 29163583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows.
    Dórea JRR; Rosa GJM; Weld KA; Armentano LE
    J Dairy Sci; 2018 Jul; 101(7):5878-5889. PubMed ID: 29680644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review.
    Xu A; Chang H; Xu Y; Li R; Li X; Zhao Y
    Waste Manag; 2021 Apr; 124():385-402. PubMed ID: 33662770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and comparative analysis of ANN and SVR-based models with conventional regression models for predicting spray drift.
    Moges G; McDonnell K; Delele MA; Ali AN; Fanta SW
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21927-21944. PubMed ID: 36280637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Establishment of artificial neural network model for predicting lymph node metastasis in patients with stage Ⅱ-Ⅲ gastric cancer].
    Xue Z; Lu J; Lin J; Huang CM; Li P; Xie JW; Wang JB; Lin JX; Chen QY; Zheng CH
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Apr; 25(4):327-335. PubMed ID: 35461201
    [No Abstract]   [Full Text] [Related]  

  • 20. Prediction of effluent concentration in a wastewater treatment plant using machine learning models.
    Guo H; Jeong K; Lim J; Jo J; Kim YM; Park JP; Kim JH; Cho KH
    J Environ Sci (China); 2015 Jun; 32():90-101. PubMed ID: 26040735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.