These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37688450)

  • 1. Secretory production of 7-dehydrocholesterol by engineered Saccharomyces cerevisiae.
    Ke X; Pan ZH; Du HF; Shen Y; Shen JD; Liu ZQ; Zheng YG
    Biotechnol J; 2023 Dec; 18(12):e2300056. PubMed ID: 37688450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol.
    Qu L; Xiu X; Sun G; Zhang C; Yang H; Liu Y; Li J; Du G; Lv X; Liu L
    Biotechnol Bioeng; 2022 May; 119(5):1278-1289. PubMed ID: 35128633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering sub-organelles of a diploid Saccharomyces cerevisiae to enhance the production of 7-dehydrocholesterol.
    Bi K; Wang W; Tang D; Shi Z; Tian S; Huang L; Lian J; Xu Z
    Metab Eng; 2024 Jul; 84():169-179. PubMed ID: 38936763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular remodeling of sterol metabolism for overproduction of 7-dehydrocholesterol in engineered yeast.
    Xiu X; Sun Y; Wu Y; Jin K; Qu L; Liu Y; Li J; Du G; Lv X; Liu L
    Bioresour Technol; 2022 Sep; 360():127572. PubMed ID: 35792326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reengineering of 7-dehydrocholesterol biosynthesis in
    Wei W; Gao S; Yi Q; Liu A; Yu S; Zhou J
    Front Microbiol; 2022; 13():978074. PubMed ID: 36016783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae.
    Tiwari R; Köffel R; Schneiter R
    EMBO J; 2007 Dec; 26(24):5109-19. PubMed ID: 18034159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of sterol homeostasis for the production of 24-epi-ergosterol in industrial yeast.
    Jiang Y; Sun Z; Lu K; Wu Z; Xue H; Zhu L; Li G; Feng Y; Wu M; Lin J; Lian J; Yang L
    Nat Commun; 2023 Jan; 14(1):437. PubMed ID: 36707526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of
    Guo XJ; Xiao WH; Wang Y; Yao MD; Zeng BX; Liu H; Zhao GR; Yuan YJ
    Biotechnol Biofuels; 2018; 11():192. PubMed ID: 30026807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alleviating Redox Imbalance Enhances 7-Dehydrocholesterol Production in Engineered Saccharomyces cerevisiae.
    Su W; Xiao WH; Wang Y; Liu D; Zhou X; Yuan YJ
    PLoS One; 2015; 10(6):e0130840. PubMed ID: 26098102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein.
    Darwiche R; Mène-Saffrané L; Gfeller D; Asojo OA; Schneiter R
    J Biol Chem; 2017 May; 292(20):8304-8314. PubMed ID: 28365570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the nucleotide-binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast.
    Papay M; Klein C; Hapala I; Petriskova L; Kuchler K; Valachovic M
    Yeast; 2020 Jan; 37(1):5-14. PubMed ID: 31830308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins.
    Choudhary V; Schneiter R
    Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16882-7. PubMed ID: 23027975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.
    Gulati S; Balderes D; Kim C; Guo ZA; Wilcox L; Area-Gomez E; Snider J; Wolinski H; Stagljar I; Granato JT; Ruggles KV; DeGiorgis JA; Kohlwein SD; Schon EA; Sturley SL
    FASEB J; 2015 Nov; 29(11):4682-94. PubMed ID: 26220175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.
    Endo-Umeda K; Yasuda K; Sugita K; Honda A; Ohta M; Ishikawa M; Hashimoto Y; Sakaki T; Makishima M
    J Steroid Biochem Mol Biol; 2014 Mar; 140():7-16. PubMed ID: 24269243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmentalized Reconstitution of Post-
    Guo XJ; Yao MD; Xiao WH; Wang Y; Zhao GR; Yuan YJ
    Front Microbiol; 2021; 12():663973. PubMed ID: 34093477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Match of functional module with chassis in 7-dehydrocholesterol synthesis].
    Zhang Y; Zhang L; Liu D; Ding M; Zhou X; Yuan Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):30-42. PubMed ID: 24818477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.
    Wagner A; Grillitsch K; Leitner E; Daum G
    Biochim Biophys Acta; 2009 Feb; 1791(2):118-24. PubMed ID: 19111628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production.
    Xu L; Wang D; Chen J; Li B; Li Q; Liu P; Qin Y; Dai Z; Fan F; Zhang X
    Metab Eng; 2022 Mar; 70():115-128. PubMed ID: 35085779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective.
    Winkler MBL; Nel L; Frain KM; Dedic E; Olesen E; Pedersen BP
    FEBS Lett; 2022 Jan; 596(2):160-179. PubMed ID: 34897668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.