These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37688586)
1. Monolayer-Based Single-Photon Source in a Liquid-Helium-Free Open Cavity Featuring 65% Brightness and Quantum Coherence. Drawer JC; Mitryakhin VN; Shan H; Stephan S; Gittinger M; Lackner L; Han B; Leibeling G; Eilenberger F; Banerjee R; Tongay S; Watanabe K; Taniguchi T; Lienau C; Silies M; Anton-Solanas C; Esmann M; Schneider C Nano Lett; 2023 Sep; 23(18):8683-8689. PubMed ID: 37688586 [TBL] [Abstract][Full Text] [Related]
2. Bright Telecom-Wavelength Single Photons Based on a Tapered Nanobeam. Lee CM; Buyukkaya MA; Harper S; Aghaeimeibodi S; Richardson CJK; Waks E Nano Lett; 2021 Jan; 21(1):323-329. PubMed ID: 33338376 [TBL] [Abstract][Full Text] [Related]
3. Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe Iff O; Buchinger Q; Moczała-Dusanowska M; Kamp M; Betzold S; Davanco M; Srinivasan K; Tongay S; Antón-Solanas C; Höfling S; Schneider C Nano Lett; 2021 Jun; 21(11):4715-4720. PubMed ID: 34048254 [TBL] [Abstract][Full Text] [Related]
4. Indistinguishable photons from a single-photon device. Santori C; Fattal D; Vucković J; Solomon GS; Yamamoto Y Nature; 2002 Oct; 419(6907):594-7. PubMed ID: 12374958 [TBL] [Abstract][Full Text] [Related]
5. Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing. Li X; Yang L; Cui L; Ou ZY; Yu D Opt Lett; 2008 Mar; 33(6):593-5. PubMed ID: 18347720 [TBL] [Abstract][Full Text] [Related]
6. Polarization Control of Deterministic Single-Photon Emitters in Monolayer WSe So JP; Jeong KY; Lee JM; Kim KH; Lee SJ; Huh W; Kim HR; Choi JH; Kim JM; Kim YS; Lee CH; Nam S; Park HG Nano Lett; 2021 Feb; 21(3):1546-1554. PubMed ID: 33502866 [TBL] [Abstract][Full Text] [Related]
7. Engineering the Impact of Phonon Dephasing on the Coherence of a WSe_{2} Single-Photon Source via Cavity Quantum Electrodynamics. Mitryakhin VN; Steinhoff A; Drawer JC; Shan H; Florian M; Lackner L; Han B; Eilenberger F; Tongay SA; Watanabe K; Taniguchi T; Antón-Solanas C; Predojević A; Gies C; Esmann M; Schneider C Phys Rev Lett; 2024 May; 132(20):206903. PubMed ID: 38829069 [TBL] [Abstract][Full Text] [Related]
8. On-demand semiconductor single-photon source with near-unity indistinguishability. He YM; He Y; Wei YJ; Wu D; Atatüre M; Schneider C; Höfling S; Kamp M; Lu CY; Pan JW Nat Nanotechnol; 2013 Mar; 8(3):213-7. PubMed ID: 23377455 [TBL] [Abstract][Full Text] [Related]
9. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Ates S; Ulrich SM; Reitzenstein S; Löffler A; Forchel A; Michler P Phys Rev Lett; 2009 Oct; 103(16):167402. PubMed ID: 19905722 [TBL] [Abstract][Full Text] [Related]
10. Polarized and Bright Telecom C-Band Single-Photon Source from InP-Based Quantum Dots Coupled to Elliptical Bragg Gratings. Ge Z; Chung T; He YM; Benyoucef M; Huo Y Nano Lett; 2024 Feb; 24(5):1746-1752. PubMed ID: 38286024 [TBL] [Abstract][Full Text] [Related]
11. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles. Qian P; Gu Z; Cao R; Wen R; Ou ZY; Chen JF; Zhang W Phys Rev Lett; 2016 Jul; 117(1):013602. PubMed ID: 27419568 [TBL] [Abstract][Full Text] [Related]
12. Ultranarrow Line Width Room-Temperature Single-Photon Source from Perovskite Quantum Dot Embedded in Optical Microcavity. Farrow T; Dhawan AR; Marshall AR; Ghorbal A; Son W; Snaith HJ; Smith JM; Taylor RA Nano Lett; 2023 Dec; 23(23):10667-10673. PubMed ID: 38016047 [TBL] [Abstract][Full Text] [Related]
13. A bright and fast source of coherent single photons. Tomm N; Javadi A; Antoniadis NO; Najer D; Löbl MC; Korsch AR; Schott R; Valentin SR; Wieck AD; Ludwig A; Warburton RJ Nat Nanotechnol; 2021 Apr; 16(4):399-403. PubMed ID: 33510454 [TBL] [Abstract][Full Text] [Related]
14. On-chip scalable highly pure and indistinguishable single-photon sources in ordered arrays: Path to quantum optical circuits. Zhang J; Chattaraj S; Huang Q; Jordao L; Lu S; Madhukar A Sci Adv; 2022 Sep; 8(35):eabn9252. PubMed ID: 36054351 [TBL] [Abstract][Full Text] [Related]
15. Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence. Lingaraju NB; Lu HH; Seshadri S; Imany P; Leaird DE; Lukens JM; Weiner AM Opt Express; 2019 Dec; 27(26):38683-38697. PubMed ID: 31878631 [TBL] [Abstract][Full Text] [Related]
16. Synchronization of optical photons for quantum information processing. Makino K; Hashimoto Y; Yoshikawa J; Ohdan H; Toyama T; van Loock P; Furusawa A Sci Adv; 2016 May; 2(5):e1501772. PubMed ID: 27386536 [TBL] [Abstract][Full Text] [Related]
17. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Kolatschek S; Nawrath C; Bauer S; Huang J; Fischer J; Sittig R; Jetter M; Portalupi SL; Michler P Nano Lett; 2021 Sep; 21(18):7740-7745. PubMed ID: 34478316 [TBL] [Abstract][Full Text] [Related]
18. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources. Yang J; Chen Y; Rao Z; Zheng Z; Song C; Chen Y; Xiong K; Chen P; Zhang C; Wu W; Yu Y; Yu S Light Sci Appl; 2024 Jan; 13(1):33. PubMed ID: 38291018 [TBL] [Abstract][Full Text] [Related]