These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37688863)
1. Life-cycle selenium accumulation and its correlations with the rhizobacteria and endophytes in the hyperaccumulating plant Cardamine hupingshanensis. Zang H; Tong X; Yuan L; Zhang Y; Zhang R; Li M; Zhu R Ecotoxicol Environ Saf; 2023 Oct; 264():115450. PubMed ID: 37688863 [TBL] [Abstract][Full Text] [Related]
2. Diversity of Endophytic Bacteria in Cardamine hupingshanensis and Potential of Culturable Selenium-Resistant Endophytes to Enhance Seed Germination Under Selenate Stress. Li Q; Zhou S; Liu N Curr Microbiol; 2021 May; 78(5):2091-2103. PubMed ID: 33772619 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Zhou Y; Tang Q; Wu M; Mou D; Liu H; Wang S; Zhang C; Ding L; Luo J Sci Rep; 2018 Feb; 8(1):2789. PubMed ID: 29434336 [TBL] [Abstract][Full Text] [Related]
4. A novel selenite-tolerant rhizosphere bacterium Wautersiella enshiensis sp. nov., isolated from Chinese selenium hyperaccumulator, Cardamine hupingshanensis. Yuan L; Xia Z; He C J Basic Microbiol; 2023 Nov; 63(11):1305-1315. PubMed ID: 37551746 [TBL] [Abstract][Full Text] [Related]
5. Anatomy and Histochemistry of the Roots and Shoots in the Aquatic Selenium Hyperaccumulator Xiang J; Ming J; Yin H; Zhu Y; Li Y; Long L; Ye Z; Wang H; Wang X; Zhang F; Yang Y; Yang C Open Life Sci; 2019 Jan; 14():318-326. PubMed ID: 33817165 [TBL] [Abstract][Full Text] [Related]
6. Effects of selenium-cadmium co-enriched Cardamine hupingshanensis on bone damage in mice. Zhang L; Shi WY; Zhang LL; Sha Y; Xu JY; Shen LC; Li YH; Yuan LX; Qin LQ Ecotoxicol Environ Saf; 2024 Mar; 272():116101. PubMed ID: 38359653 [TBL] [Abstract][Full Text] [Related]
7. Impact of selenium on rhizosphere microbiome of a hyperaccumulation plant Cardamine violifolia. Guo Z; Zhu B; Guo J; Wang G; Li M; Yang Q; Wang L; Fei Y; Wang S; Yu T; Sun Y Environ Sci Pollut Res Int; 2022 Jun; 29(26):40241-40251. PubMed ID: 35122198 [TBL] [Abstract][Full Text] [Related]
8. Whole genome identification, molecular docking and expression analysis of enzymes involved in the selenomethionine cycle in Cardamine hupingshanensis. Zeng X; Luo G; Fan Z; Xiao Z; Lu Y; Xiao Q; Hou Z; Tang Q; Zhou Y BMC Plant Biol; 2024 Mar; 24(1):199. PubMed ID: 38500044 [TBL] [Abstract][Full Text] [Related]
9. Comparative Analysis of the Chloroplast Genome of Huang S; Kang Z; Chen Z; Deng Y Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421792 [No Abstract] [Full Text] [Related]
10. Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. Cui L; Tian X; Xie H; Cong X; Cui L; Wu H; Wang J; Li B; Zhao J; Cui Y; Feng X; Li YF Sci Total Environ; 2023 Mar; 863():160940. PubMed ID: 36528102 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis. Tong X; Yuan L; Luo L; Yin X ScientificWorldJournal; 2014; 2014():108562. PubMed ID: 25478582 [TBL] [Abstract][Full Text] [Related]
12. Gene Identification, expression analysis and molecular docking of ATP sulfurylase in the selenization pathway of Cardamine hupingshanensis. Xiao Z; Lu Y; Zou Y; Zhang C; Ding L; Luo K; Tang Q; Zhou Y BMC Plant Biol; 2022 Oct; 22(1):491. PubMed ID: 36253724 [TBL] [Abstract][Full Text] [Related]
13. Gene identification, expression analysis, and molecular docking of SAT and OASTL in the metabolic pathway of selenium in Cardamine hupingshanensis. Chen Y; Li Y; Luo G; Luo C; Xiao Z; Lu Y; Xiang Z; Hou Z; Xiao Q; Zhou Y; Tang Q Plant Cell Rep; 2024 May; 43(6):148. PubMed ID: 38775862 [TBL] [Abstract][Full Text] [Related]
14. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. Cheng Y; Huang Y; Liu K; Pan S; Qin Z; Wu T; Xu X J Sci Food Agric; 2021 Feb; 101(3):989-996. PubMed ID: 32761836 [TBL] [Abstract][Full Text] [Related]
15. Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator. Both EB; Stonehouse GC; Lima LW; Fakra SC; Aguirre B; Wangeline AL; Xiang J; Yin H; Jókai Z; Soós Á; Dernovics M; Pilon-Smits EAH Sci Total Environ; 2020 Feb; 703():135041. PubMed ID: 31767332 [TBL] [Abstract][Full Text] [Related]
16. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Ma Y; Yin J; Wang J; Liu X; He J; Zhang R; Rao S; Cong X; Xiong Y; Wu M Food Chem; 2023 Nov; 427():136710. PubMed ID: 37406448 [TBL] [Abstract][Full Text] [Related]
17. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. Li J; Huang C; Lai L; Wang L; Li M; Tan Y; Zhang T Environ Geochem Health; 2023 Aug; 45(8):5515-5529. PubMed ID: 37355493 [TBL] [Abstract][Full Text] [Related]
18. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
19. Identification, characterization, and expression analysis of WRKY transcription factors in Cardamine violifolia reveal the key genes involved in regulating selenium accumulation. Liu XM; Yuan ZG; Rao S; Zhang WW; Ye JB; Cheng SY; Xu F BMC Plant Biol; 2024 Sep; 24(1):860. PubMed ID: 39266968 [TBL] [Abstract][Full Text] [Related]
20. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Alford ER; Pilon-Smits EA; Fakra SC; Paschke MW Am J Bot; 2012 Dec; 99(12):1930-41. PubMed ID: 23204487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]