These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37688930)
1. Natural and recyclable alginate hydrogels as extracting media for recovering valuable metals of spent lithium-ion batteries from a deep eutectic solvent. Wang Y; Goikolea E; Ruiz de Larramendi I; Reyes E; Lanceros-Méndez S; Zhang Q Waste Manag; 2023 Sep; 171():271-280. PubMed ID: 37688930 [TBL] [Abstract][Full Text] [Related]
2. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects. Luo Y; Ou L; Yin C Waste Manag; 2023 Jun; 164():1-8. PubMed ID: 37023641 [TBL] [Abstract][Full Text] [Related]
3. Green and efficient recycling method for spent Ni-Co-Mn lithium batteries utilizing multifunctional deep eutectic solvents. Luo Y; Deng Y; Shi H; Yang H; Yin C; Ou L J Environ Manage; 2024 Feb; 351():119814. PubMed ID: 38103425 [TBL] [Abstract][Full Text] [Related]
4. Microwave-ultra-fast recovery of valuable metals from spent lithium-ion batteries by deep eutectic solvents. Zhu A; Bian X; Han W; Wen Y; Ye K; Wang G; Yan J; Cao D; Zhu K; Wang S Waste Manag; 2023 Feb; 156():139-147. PubMed ID: 36462344 [TBL] [Abstract][Full Text] [Related]
5. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. Lu B; Du R; Wang G; Wang Y; Dong S; Zhou D; Wang S; Li C Environ Res; 2022 Sep; 212(Pt B):113286. PubMed ID: 35452672 [TBL] [Abstract][Full Text] [Related]
6. High-Selectivity Recycling of Valuable Metals from Spent Lithium-Ion Batteries Using Recyclable Deep Eutectic Solvents. Zhang Y; Wang F; Zhang W; Ren S; Hou Y; Wu W ChemSusChem; 2024 May; 17(9):e202301774. PubMed ID: 38197219 [TBL] [Abstract][Full Text] [Related]
7. Decomposition of Deep Eutectic Solvent Aids Metals Extraction in Lithium-Ion Batteries Recycling. Schiavi PG; Altimari P; Sturabotti E; Giacomo Marrani A; Simonetti G; Pagnanelli F ChemSusChem; 2022 Sep; 15(18):e202200966. PubMed ID: 35877940 [TBL] [Abstract][Full Text] [Related]
8. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition. Cheng J; Zheng C; Xu K; Zhu Y; Song Y; Jing C J Hazard Mater; 2024 Mar; 465():133157. PubMed ID: 38064943 [TBL] [Abstract][Full Text] [Related]
9. Lithium-Ion Battery Cathode Recycling through a Closed-Loop Process Using a Choline Chloride-Ethylene Glycol-Based Deep-Eutectic Solvent in the Presence of Acid. Yetim D; Svecova L; Leprêtre JC ChemistryOpen; 2024 Feb; 13(2):e202300061. PubMed ID: 37493306 [TBL] [Abstract][Full Text] [Related]
10. Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide. Huang F; Li T; Yan X; Xiong Y; Zhang X; Lu S; An N; Huang W; Guo Q; Ge X ACS Omega; 2022 Apr; 7(13):11452-11459. PubMed ID: 35415356 [TBL] [Abstract][Full Text] [Related]
11. A Weak Acidic and Strong Coordinated Deep Eutectic Solvent for Recycling of Cathode from Spent Lithium-Ion Batteries. Tian Y; Chen W; Zhang B; Chen Y; Shi R; Liu S; Zhang Z; Mu T ChemSusChem; 2022 Aug; 15(16):e202200524. PubMed ID: 35778817 [TBL] [Abstract][Full Text] [Related]
12. Phase-separated solvothermal high yields recovery of lithium and cobalt cathode precursors from end-of-life LiCoO Morina R; Carena E; Pianta N; Perona E; Ostroman I; Mustarelli P; Ferrara C J Environ Manage; 2024 Nov; 370():122827. PubMed ID: 39395287 [TBL] [Abstract][Full Text] [Related]
13. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Luo Y; Yin C; Ou L Sci Total Environ; 2023 Dec; 902():166095. PubMed ID: 37558062 [TBL] [Abstract][Full Text] [Related]
14. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process. Luo Y; Ou L; Yin C Sci Total Environ; 2023 Jun; 875():162567. PubMed ID: 36871725 [TBL] [Abstract][Full Text] [Related]
15. Selective Extraction of Critical Metals from Spent Lithium-Ion Batteries. Wang M; Liu K; Xu Z; Dutta S; Valix M; Alessi DS; Huang L; Zimmerman JB; Tsang DCW Environ Sci Technol; 2023 Mar; 57(9):3940-3950. PubMed ID: 36800282 [TBL] [Abstract][Full Text] [Related]
16. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target. Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028 [TBL] [Abstract][Full Text] [Related]
17. A novel green deep eutectic solvent for one-step selective separation of valuable metals from spent lithium batteries: Bifunctional effect and mechanism. Yang Z; Tang S; Huo X; Zhang M; Guo M Environ Res; 2023 Sep; 233():116337. PubMed ID: 37301494 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Recovery and Recycling of Cobalt from Spent Lithium-Ion Batteries Using an Suriyanarayanan S; Babu MP; Murugan R; Muthuraj D; Ramanujam K; Nicholls IA ACS Omega; 2023 Feb; 8(7):6959-6967. PubMed ID: 36844576 [TBL] [Abstract][Full Text] [Related]
19. Recommended Practices for the Electrochemical Recovery of Cobalt from Lithium Cobalt Oxide: A Case Study of the Choline Chloride:Ethylene Glycol Deep Eutectic Solvent. Shahid M; Sahadevan SA; Ramani V; Sankarasubramanian S ChemSusChem; 2024 Aug; ():e202401205. PubMed ID: 39213259 [TBL] [Abstract][Full Text] [Related]
20. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent. He X; Wen Y; Wang X; Cui Y; Li L; Ma H Waste Manag; 2023 Feb; 157():8-16. PubMed ID: 36512926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]