These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37689062)

  • 1. Synthetic symmetry breaking and programmable multicellular structure formation.
    Wauford N; Patel A; Tordoff J; Enghuus C; Jin A; Toppen J; Kemp ML; Weiss R
    Cell Syst; 2023 Sep; 14(9):806-818.e5. PubMed ID: 37689062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Stem Cell Self-organization to Build Better Organoids.
    Brassard JA; Lutolf MP
    Cell Stem Cell; 2019 Jun; 24(6):860-876. PubMed ID: 31173716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming self-organizing multicellular structures with synthetic cell-cell signaling.
    Toda S; Blauch LR; Tang SKY; Morsut L; Lim WA
    Science; 2018 Jul; 361(6398):156-162. PubMed ID: 29853554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic developmental biology: Engineering approaches to guide multicellular organization.
    Zarkesh I; Kazemi Ashtiani M; Shiri Z; Aran S; Braun T; Baharvand H
    Stem Cell Reports; 2022 Apr; 17(4):715-733. PubMed ID: 35276092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry Breaking of Human Pluripotent Stem Cells (hPSCs) in Micropattern Generates a Polarized Spinal Cord-Like Organoid (pSCO) with Dorsoventral Organization.
    Seo K; Cho S; Shin H; Shin A; Lee JH; Kim JH; Lee B; Jang H; Kim Y; Cho HM; Park Y; Kim HY; Lee T; Park WY; Kim YJ; Yang E; Geum D; Kim H; Cho IJ; Lee S; Ryu JR; Sun W
    Adv Sci (Weinh); 2023 Jul; 10(20):e2301787. PubMed ID: 37170679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration.
    Glykofrydis F; Cachat E; Berzanskyte I; Dzierzak E; Davies JA
    ACS Synth Biol; 2021 Jun; 10(6):1465-1480. PubMed ID: 34019395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization of organoids by bioengineered symmetry breaking.
    Ryu JR; Ko K; Sun W
    IBRO Neurosci Rep; 2024 Dec; 17():22-31. PubMed ID: 38881849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
    Hoang P; Ma Z
    Acta Biomater; 2021 Sep; 132():23-36. PubMed ID: 33486104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization and symmetry breaking in intestinal organoid development.
    Serra D; Mayr U; Boni A; Lukonin I; Rempfler M; Challet Meylan L; Stadler MB; Strnad P; Papasaikas P; Vischi D; Waldt A; Roma G; Liberali P
    Nature; 2019 May; 569(7754):66-72. PubMed ID: 31019299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic developmental biology: build and control multicellular systems.
    Ebrahimkhani MR; Ebisuya M
    Curr Opin Chem Biol; 2019 Oct; 52():9-15. PubMed ID: 31102790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human airway organoid engineering as a step toward lung regeneration and disease modeling.
    Tan Q; Choi KM; Sicard D; Tschumperlin DJ
    Biomaterials; 2017 Jan; 113():118-132. PubMed ID: 27815996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns.
    Glass DS; Riedel-Kruse IH
    Cell; 2018 Jul; 174(3):649-658.e16. PubMed ID: 30033369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of cell-cell adhesions prevents symmetry breaking and locks in pluripotency in 3D gastruloids.
    Cermola F; Amoroso F; Saracino F; Ibello E; De Cesare D; Fico A; Cobellis G; Scalera E; Casiraghi C; D'Aniello C; Patriarca EJ; Minchiotti G
    Stem Cell Reports; 2022 Nov; 17(11):2548-2564. PubMed ID: 36306780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive self-organization in the embryo: its importance to adult anatomy and to tissue engineering.
    Davies JA
    J Anat; 2018 Apr; 232(4):524-533. PubMed ID: 29023694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.
    Yaman YI; Ramanathan S
    Cell; 2023 Feb; 186(3):513-527.e19. PubMed ID: 36657441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes.
    Barnhart E; Lee KC; Allen GM; Theriot JA; Mogilner A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5045-50. PubMed ID: 25848042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.
    Nuñez IN; Matute TF; Del Valle ID; Kan A; Choksi A; Endy D; Haseloff J; Rudge TJ; Federici F
    ACS Synth Biol; 2017 Feb; 6(2):256-265. PubMed ID: 27794593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing synthetic biology to engineer organoids and tissues.
    Trentesaux C; Yamada T; Klein OD; Lim WA
    Cell Stem Cell; 2023 Jan; 30(1):10-19. PubMed ID: 36608674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-bit adhesion logic enables universal multicellular interface patterning.
    Kim H; Skinner DJ; Glass DS; Hamby AE; Stuart BAR; Dunkel J; Riedel-Kruse IH
    Nature; 2022 Aug; 608(7922):324-329. PubMed ID: 35948712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From single cells to tissue self-organization.
    Xavier da Silveira Dos Santos A; Liberali P
    FEBS J; 2019 Apr; 286(8):1495-1513. PubMed ID: 30390414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.