These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37689746)

  • 1. Griddient: a microfluidic array to generate reconfigurable gradients on-demand for spatial biology applications.
    Sanchez-de-Diego C; Virumbrales-Muñoz M; Hermes B; Juang TD; Juang DS; Riendeau J; Guzman EC; Reed-McBain CA; Abizanda-Campo S; Patel J; Hess NJ; Skala MC; Beebe DJ; Ayuso JM
    Commun Biol; 2023 Sep; 6(1):925. PubMed ID: 37689746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model.
    Oh JM; Begum HM; Liu YL; Ren Y; Shen K
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3107-3121. PubMed ID: 35678715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments.
    Ando Y; Ta HP; Yen DP; Lee SS; Raola S; Shen K
    Sci Rep; 2017 Nov; 7(1):15233. PubMed ID: 29123197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes.
    Auxillos J; Crouigneau R; Li YF; Dai Y; Stigliani A; Tavernaro I; Resch-Genger U; Sandelin A; Marie R; Pedersen SF
    Sci Adv; 2024 May; 10(18):eadn3448. PubMed ID: 38701211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
    Huang YL; Segall JE; Wu M
    Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated analysis of the tumor microenvironment using a reconfigurable microfluidic cell culture platform.
    Sethakorn N; Heninger E; Breneman MT; Recchia E; Ding AB; Jarrard DF; Hematti P; Beebe DJ; Kosoff D
    FASEB J; 2022 Oct; 36(10):e22540. PubMed ID: 36083096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reconfigurable microfluidic building block platform for high-throughput nonhormonal contraceptive screening.
    Lee JH; van der Linden C; Diaz FJ; Wong PK
    Lab Chip; 2022 Jun; 22(13):2531-2539. PubMed ID: 35678283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic device to attain high spatial and temporal control of oxygen.
    Lam SF; Shirure VS; Chu YE; Soetikno AG; George SC
    PLoS One; 2018; 13(12):e0209574. PubMed ID: 30571786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to Get Away with Gradients.
    Comelles J; Castillo-Fernández Ó; Martínez E
    Adv Exp Med Biol; 2022; 1379():31-54. PubMed ID: 35760987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a self-assembled and vascularized tumor array
    Lee G; Kim SJ; Park JK
    Lab Chip; 2023 Sep; 23(18):4079-4091. PubMed ID: 37614164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.
    Wang L; Liu W; Wang Y; Wang JC; Tu Q; Liu R; Wang J
    Lab Chip; 2013 Feb; 13(4):695-705. PubMed ID: 23254684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis.
    Shirure VS; Lezia A; Tao A; Alonzo LF; George SC
    Angiogenesis; 2017 Nov; 20(4):493-504. PubMed ID: 28608153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform.
    Uzel SG; Amadi OC; Pearl TM; Lee RT; So PT; Kamm RD
    Small; 2016 Feb; 12(5):612-22. PubMed ID: 26619365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal microfluidic gradient generator.
    Irimia D; Geba DA; Toner M
    Anal Chem; 2006 May; 78(10):3472-7. PubMed ID: 16689552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening.
    Wang B; He BS; Ruan XL; Zhu J; Hu R; Wang J; Li Y; Yang YH; Liu ML
    Mil Med Res; 2022 Sep; 9(1):51. PubMed ID: 36131323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications.
    Oh HJ; Kim J; Kim H; Choi N; Chung S
    Adv Healthc Mater; 2021 May; 10(9):e2002122. PubMed ID: 33576178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.