These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37689746)

  • 21. Microfluidic device for generating a stepwise concentration gradient on a microwell slide for cell analysis.
    Weibull E; Matsui S; Sakai M; Andersson Svahn H; Ohashi T
    Biomicrofluidics; 2013; 7(6):64115. PubMed ID: 24396549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform.
    Marasco CC; Enders JR; Seale KT; McLean JA; Wikswo JP
    PLoS One; 2015; 10(2):e0117685. PubMed ID: 25723555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening.
    Wang B; He BS; Ruan XL; Zhu J; Hu R; Wang J; Li Y; Yang YH; Liu ML
    Mil Med Res; 2022 Sep; 9(1):51. PubMed ID: 36131323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications.
    Oh HJ; Kim J; Kim H; Choi N; Chung S
    Adv Healthc Mater; 2021 May; 10(9):e2002122. PubMed ID: 33576178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterning Neuroepithelial Cell Sheet
    Li N; Yang F; Parthasarathy S; Pierre SS; Hong K; Pavon N; Pak C; Sun Y
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1713-1721. PubMed ID: 33751893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine.
    Imparato G; Urciuolo F; Mazio C; Netti PA
    Lab Chip; 2022 Dec; 23(1):25-43. PubMed ID: 36305728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates.
    Sip CG; Bhattacharjee N; Folch A
    Lab Chip; 2014 Jan; 14(2):302-14. PubMed ID: 24225908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.
    Barata D; Spennati G; Correia C; Ribeiro N; Harink B; van Blitterswijk C; Habibovic P; van Rijt S
    Biomed Microdevices; 2017 Sep; 19(4):81. PubMed ID: 28884359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields.
    An R; Minerick AR
    Langmuir; 2022 May; 38(19):5977-5986. PubMed ID: 35507010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
    Berger Fridman I; Kostas J; Gregus M; Ray S; Sullivan MR; Ivanov AR; Cohen S; Konry T
    Acta Biomater; 2021 Sep; 132():473-488. PubMed ID: 34153511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconfigurable Microfluidic Magnetic Valve Arrays: Towards a Radiotherapy-Compatible Spheroid Culture Platform for the Combinatorial Screening of Cancer Therapies.
    Brunet AR; Labelle F; Wong P; Gervais T
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28976942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological applications of microfluidic gradient devices.
    Kim S; Kim HJ; Jeon NL
    Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modular cell culture device for generating arrays of gradients using stacked microfluidic flows.
    Sip CG; Bhattacharjee N; Folch A
    Biomicrofluidics; 2011 Jun; 5(2):22210. PubMed ID: 21799716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
    Baker BM; Trappmann B; Stapleton SC; Toro E; Chen CS
    Lab Chip; 2013 Aug; 13(16):3246-52. PubMed ID: 23787488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.