These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37689862)

  • 1. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application.
    Fuciños C; Rodríguez-Sanz A; García-Caamaño E; Gerbino E; Torrado A; Gómez-Zavaglia A; Rúa ML
    Food Res Int; 2023 Oct; 172():113086. PubMed ID: 37689862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type.
    Bianchi JRO; de la Torre LG; Costa ALR
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in the fabrication of food microparticles and nanoparticles using microfluidic systems.
    Xu X; Tang Q; Gao Y; Chen S; Yu Y; Qian H; McClements DJ; Cao C; Yuan B
    Crit Rev Food Sci Nutr; 2024 Mar; ():1-15. PubMed ID: 38520155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Delivery System Functionality Using Microfluidics.
    Bonat Celli G; Abbaspourrad A
    Annu Rev Food Sci Technol; 2018 Mar; 9():481-501. PubMed ID: 29328806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics as a tool to assess and induce emulsion destabilization.
    Porto Santos T; Cejas CM; Cunha RL
    Soft Matter; 2022 Jan; 18(4):698-710. PubMed ID: 35037925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application.
    Carvalho BG; Ceccato BT; Michelon M; Han SW; de la Torre LG
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing.
    Lo CT; Jahn A; Locascio LE; Vreeland WN
    Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation.
    Yonet-Tanyeri N; Amer M; Balmert SC; Korkmaz E; Falo LD; Little SR
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2864-2877. PubMed ID: 35674145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications.
    Mu R; Bu N; Pang J; Wang L; Zhang Y
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Microfluidics for Food and Nutrition Applications.
    Schroen K; Berton-Carabin C; Renard D; Marquis M; Boire A; Cochereau R; Amine C; Marze S
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High precision microfluidic microencapsulation of bacteriophages for enteric delivery.
    Vinner GK; Malik DJ
    Res Microbiol; 2018 Nov; 169(9):522-530. PubMed ID: 29886256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics.
    Gkionis L; Aojula H; Harris LK; Tirella A
    Int J Pharm; 2021 Jul; 604():120711. PubMed ID: 34015381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-based microfluidics in biomedical applications.
    Amirifar L; Besanjideh M; Nasiri R; Shamloo A; Nasrollahi F; de Barros NR; Davoodi E; Erdem A; Mahmoodi M; Hosseini V; Montazerian H; Jahangiry J; Darabi MA; Haghniaz R; Dokmeci MR; Annabi N; Ahadian S; Khademhosseini A
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34781274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.