These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37690284)

  • 1. An integrated approach of machine learning and Bayesian spatial Poisson model for large-scale real-time traffic conflict prediction.
    Li D; Fu C; Sayed T; Wang W
    Accid Anal Prev; 2023 Nov; 192():107286. PubMed ID: 37690284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-resolution trajectory data driven method for real-time evaluation of traffic safety.
    Hu Y; Li Y; Huang H; Lee J; Yuan C; Zou G
    Accid Anal Prev; 2022 Feb; 165():106503. PubMed ID: 34863526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting real-time traffic conflicts using deep learning.
    Formosa N; Quddus M; Ison S; Abdel-Aty M; Yuan J
    Accid Anal Prev; 2020 Mar; 136():105429. PubMed ID: 31931409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycle-level traffic conflict prediction at signalized intersections with LiDAR data and Bayesian deep learning.
    Wu P; Wei W; Zheng L; Hu Z; Essa M
    Accid Anal Prev; 2023 Nov; 192():107268. PubMed ID: 37651856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing autonomous vehicle hyperawareness in busy traffic environments: A machine learning approach.
    Alozi AR; Hussein M
    Accid Anal Prev; 2024 Apr; 198():107458. PubMed ID: 38277854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random parameters Bayesian hierarchical modeling of traffic conflict extremes for crash estimation.
    Fu C; Sayed T
    Accid Anal Prev; 2021 Jul; 157():106159. PubMed ID: 33957475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conflict-based approach for real-time road safety analysis: Comparative evaluation with crash-based models.
    Orsini F; Gecchele G; Rossi R; Gastaldi M
    Accid Anal Prev; 2021 Oct; 161():106382. PubMed ID: 34479121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-type Bayesian hierarchical modeling of traffic conflict extremes for crash estimation.
    Fu C; Sayed T; Zheng L
    Accid Anal Prev; 2021 Sep; 160():106309. PubMed ID: 34311954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traffic conflict assessment using macroscopic traffic flow variables: A novel framework for real-time applications.
    Gore N; Chauhan R; Easa S; Arkatkar S
    Accid Anal Prev; 2023 Jun; 185():107020. PubMed ID: 36893670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators.
    Zheng L; Sayed T; Essa M
    Accid Anal Prev; 2019 Feb; 123():314-323. PubMed ID: 30562670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time conflict-based Bayesian Tobit models for safety evaluation of signalized intersections.
    Guo Y; Sayed T; Essa M
    Accid Anal Prev; 2020 Sep; 144():105660. PubMed ID: 32623321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of explainable machine learning for real-time safety analysis toward a connected vehicle environment.
    Yuan C; Li Y; Huang H; Wang S; Sun Z; Wang H
    Accid Anal Prev; 2022 Jun; 171():106681. PubMed ID: 35468530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full Bayesian conflict-based models for real time safety evaluation of signalized intersections.
    Essa M; Sayed T
    Accid Anal Prev; 2019 Aug; 129():367-381. PubMed ID: 30293598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of rear-end conflict frequency using multiple-location traffic parameters.
    Katrakazas C; Theofilatos A; Islam MA; Papadimitriou E; Dimitriou L; Antoniou C
    Accid Anal Prev; 2021 Mar; 152():106007. PubMed ID: 33556654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis.
    Yuan R; Abdel-Aty M; Xiang Q
    Accid Anal Prev; 2024 Sep; 205():107681. PubMed ID: 38897142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposing an effective approach for traffic safety assessment on heterogeneous traffic conditions using surrogate safety measures and speed of the involved vehicles.
    Hasain NM; Ahmed MA
    Traffic Inj Prev; 2024; 25(2):219-227. PubMed ID: 38085579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A literature review of machine learning algorithms for crash injury severity prediction.
    Santos K; Dias JP; Amado C
    J Safety Res; 2022 Feb; 80():254-269. PubMed ID: 35249605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrating stochastic traffic simulation models for safety and operational measures based on vehicle conflict distributions obtained from aerial and traffic camera videos.
    Sha D; Gao J; Yang D; Zuo F; Ozbay K
    Accid Anal Prev; 2023 Jan; 179():106878. PubMed ID: 36334543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling pedestrian behavior in pedestrian-vehicle near misses: A continuous Gaussian Process Inverse Reinforcement Learning (GP-IRL) approach.
    Nasernejad P; Sayed T; Alsaleh R
    Accid Anal Prev; 2021 Oct; 161():106355. PubMed ID: 34461394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.