These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37690305)

  • 1. Effects of particle shape and surface roughness on van der Waals interactions and coupling to dynamics in nanocrystals.
    Lee J; Nakouzi E; Heo J; Legg BA; Schenter GK; Li D; Park C; Ma H; Chun J
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1974-1983. PubMed ID: 37690305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative importance of electrostatic and van der Waals forces in particle adhesion to rough conducting surfaces.
    Rajupet S; Riet AA; Chen Q; Sow M; Lacks DJ
    Phys Rev E; 2021 Apr; 103(4-1):042906. PubMed ID: 34005883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Van der Waals interaction in uniaxial anisotropic media.
    Kornilovitch PE
    J Phys Condens Matter; 2013 Jan; 25(3):035102. PubMed ID: 23234868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical models for the van der Waals force and capillary force between a rough particle and surface.
    You S; Wan MP
    Langmuir; 2013 Jul; 29(29):9104-17. PubMed ID: 23802940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Van der Waals Emulsions: Emulsions Stabilized by Surface-Inactive, Hydrophilic Particles via van der Waals Attraction.
    Marina PF; Cheng C; Sedev R; Stocco A; Binks BP; Wang D
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9510-9514. PubMed ID: 29808514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direction-specific van der Waals attraction between rutile TiO
    Zhang X; He Y; Sushko ML; Liu J; Luo L; De Yoreo JJ; Mao SX; Wang C; Rosso KM
    Science; 2017 Apr; 356(6336):434-437. PubMed ID: 28450642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.
    Wang J; Nguyen AV
    Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling laws for van der Waals interactions in nanostructured materials.
    Gobre VV; Tkatchenko A
    Nat Commun; 2013; 4():2341. PubMed ID: 23955481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modeling approach to describe the adhesion of rough, asymmetric particles to surfaces.
    Eichenlaub S; Kumar G; Beaudoin S
    J Colloid Interface Sci; 2006 Jul; 299(2):656-64. PubMed ID: 16631774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel analytical expressions for determining van der Waals interaction between a particle and air-water interface: Unexpected stronger van der Waals force than capillary force.
    Du Y; Bradford SA; Shen C; Li T; Bi X; Liu D; Huang Y
    J Colloid Interface Sci; 2022 Mar; 610():982-993. PubMed ID: 34876261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity.
    Fuster HA; Wang X; Wang X; Bukusoglu E; Spagnolie SE; Abbott NL
    Sci Adv; 2020 Jun; 6(25):eabb1327. PubMed ID: 32596470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Average and extreme multi-atom Van der Waals interactions: strong coupling of multi-atom Van der Waals interactions with covalent bonding.
    Finkelstein AV
    Chem Cent J; 2007 Jul; 1():21. PubMed ID: 17880673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the Van Der Waals Forces during the Adhesion of Capsule-Shaped Bacteria to Flat Surfaces.
    Mohamed Zuki F; Edyvean RGJ; Pourzolfaghar H; Kasim N
    Biomimetics (Basel); 2021 Jan; 6(1):. PubMed ID: 33429852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropically patchy particles: engineering valence through shape entropy.
    van Anders G; Ahmed NK; Smith R; Engel M; Glotzer SC
    ACS Nano; 2014 Jan; 8(1):931-40. PubMed ID: 24359081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes.
    Xiao D; Wu Z; Song M; Chun J; Schenter GK; Li D
    Langmuir; 2018 Jan; 34(4):1466-1472. PubMed ID: 29287142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of sonochemical production and oriented aggregation of BaTiO
    Yasui K; Kato K
    Ultrason Sonochem; 2017 Mar; 35(Pt B):673-680. PubMed ID: 27180048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal particle deposition on microchannel walls, for attractive and repulsive surface potentials.
    Porto Santos T; Cunha RL; Tabeling P; Cejas CM
    Phys Chem Chem Phys; 2020 Aug; 22(30):17236-17246. PubMed ID: 32685946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.