These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37690599)

  • 21. Effects of anoxia on ATP, water, ion and pH balance in an insect (
    Ravn MV; Campbell JB; Gerber L; Harrison JF; Overgaard J
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30630963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential.
    Andersen MK; Folkersen R; MacMillan HA; Overgaard J
    J Exp Biol; 2017 Feb; 220(Pt 3):487-496. PubMed ID: 27903702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palytoxin Evokes Reversible Spreading Depolarization in the Locust CNS.
    Wang Y; Van Dusen RA; McGuire C; Andrew RD; Robertson RM
    J Neurophysiol; 2024 Oct; ():. PubMed ID: 39412568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems.
    Spong KE; Andrew RD; Robertson RM
    J Neurophysiol; 2016 Sep; 116(3):1117-27. PubMed ID: 27334953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell swelling increases the severity of spreading depression in Locusta migratoria.
    Spong KE; Chin B; Witiuk KL; Robertson RM
    J Neurophysiol; 2015 Dec; 114(6):3111-20. PubMed ID: 26378209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coma in response to environmental stress in the locust: a model for cortical spreading depression.
    Rodgers CI; Armstrong GA; Robertson RM
    J Insect Physiol; 2010 Aug; 56(8):980-90. PubMed ID: 20361971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of adenosine in functional recovery following anoxic coma in Locusta migratoria.
    Van Dusen RA; Lanz C; Robertson RM
    J Insect Physiol; 2020 Jul; 124():104057. PubMed ID: 32416084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives.
    Teets NM; Gantz JD; Kawarasaki Y
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 32051174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of the blood-brain barrier exacerbates spreading depression in the locust CNS.
    Spong KE; Rochon-Terry G; Money TG; Robertson RM
    J Insect Physiol; 2014 Jul; 66():1-9. PubMed ID: 24837786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K
    Rubino JG; Wilson JM; Wood CM
    J Comp Physiol B; 2019 Oct; 189(5):549-566. PubMed ID: 31486919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses.
    Yi SX; Gantz JD; Lee RE
    J Comp Physiol B; 2017 Jan; 187(1):79-86. PubMed ID: 27568301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium signaling mediates cold sensing in insect tissues.
    Teets NM; Yi SX; Lee RE; Denlinger DL
    Proc Natl Acad Sci U S A; 2013 May; 110(22):9154-9. PubMed ID: 23671084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for a rapid cold hardening response in cultured
    Nadeau EAW; Teets NM
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31862846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A; Pedersen TH; Petersen AG; Nielsen OB; Overgaard J
    J Exp Biol; 2014 Apr; 217(Pt 8):1297-306. PubMed ID: 24744424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.
    Teets NM; Denlinger DL
    J Proteome Res; 2016 Aug; 15(8):2855-62. PubMed ID: 27362561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cold acclimation modulates voltage gated Ca
    Bayley JS; Klepke MJ; Pedersen TH; Overgaard J
    J Insect Physiol; 2019 Apr; 114():116-124. PubMed ID: 30879976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster.
    Overgaard J; Malmendal A; Sørensen JG; Bundy JG; Loeschcke V; Nielsen NC; Holmstrup M
    J Insect Physiol; 2007 Dec; 53(12):1218-32. PubMed ID: 17662301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
    Nilson TL; Sinclair BJ; Roberts SP
    J Insect Physiol; 2006 Oct; 52(10):1027-33. PubMed ID: 16996534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.