These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37690638)
1. The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications. Asami J; Quevedo BV; Santos AR; Giorno LP; Komatsu D; de Rezende Duek EA Int J Biol Macromol; 2023 Dec; 253(Pt 2):126782. PubMed ID: 37690638 [TBL] [Abstract][Full Text] [Related]
2. Characterization of associated proteins and phospholipids in natural rubber latex. Sansatsadeekul J; Sakdapipanich J; Rojruthai P J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of small and large rubber particles from Hevea brasiliensis. Yamashita S; Mizuno M; Hayashi H; Yamaguchi H; Miyagi-Inoue Y; Fushihara K; Koyama T; Nakayama T; Takahashi S Biosci Biotechnol Biochem; 2018 Jun; 82(6):1011-1020. PubMed ID: 29191089 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Sakdapipanich JT J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267 [TBL] [Abstract][Full Text] [Related]
5. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. Salomez M; Subileau M; Intapun J; Bonfils F; Sainte-Beuve J; Vaysse L; Dubreucq E J Appl Microbiol; 2014 Oct; 117(4):921-9. PubMed ID: 24891014 [TBL] [Abstract][Full Text] [Related]
6. The aging analysis of natural rubber-Copaifera oblongifolia extract membranes. Hochberger LC; Junior JM; Gama LA; Arrais-Silva WW; de Souza NC; de Souza Souto PC Int J Biol Macromol; 2023 Apr; 235():123742. PubMed ID: 36806774 [TBL] [Abstract][Full Text] [Related]
7. Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties. Berthelot K; Lecomte S; Estevez Y; Coulary-Salin B; Bentaleb A; Cullin C; Deffieux A; Peruch F PLoS One; 2012; 7(10):e48065. PubMed ID: 23133547 [TBL] [Abstract][Full Text] [Related]
8. Molecular Mechanisms of Natural Rubber Biosynthesis. Yamashita S; Takahashi S Annu Rev Biochem; 2020 Jun; 89():821-851. PubMed ID: 32228045 [TBL] [Abstract][Full Text] [Related]
9. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Guerra NB; Sant'Ana Pegorin G; Boratto MH; de Barros NR; de Oliveira Graeff CF; Herculano RD Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112126. PubMed ID: 34082943 [TBL] [Abstract][Full Text] [Related]
11. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Guidelli EJ; Ramos AP; Zaniquelli ME; Baffa O Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):140-5. PubMed ID: 21803643 [TBL] [Abstract][Full Text] [Related]
12. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. Cabrera FC; Agostini DL; Dos Santos RJ; Guimarães FE; Guerrero AR; Aroca RF; Job AE Luminescence; 2014 Dec; 29(8):1047-52. PubMed ID: 24760547 [TBL] [Abstract][Full Text] [Related]
13. Extraction and characterization of a natural rubber from Euphorbia characias latex. Spanò D; Pintus F; Mascia C; Scorciapino MA; Casu M; Floris G; Medda R Biopolymers; 2012 Aug; 97(8):589-94. PubMed ID: 22605550 [TBL] [Abstract][Full Text] [Related]
14. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Berthelot K; Lecomte S; Estevez Y; Zhendre V; Henry S; Thévenot J; Dufourc EJ; Alves ID; Peruch F Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):287-99. PubMed ID: 24036080 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of epoxidized natural rubber grafted with hyaluronic acid for the development of biomaterials. Quevedo BV; Komatsu D; de Lourdes Rezende M; de Rezende Duek EA Int J Biol Macromol; 2023 Jul; 244():125359. PubMed ID: 37321441 [TBL] [Abstract][Full Text] [Related]
16. Microbial communities in natural rubber coagula during maturation: impacts on technological properties of dry natural rubber. Salomez M; Subileau M; Vallaeys T; Santoni S; Bonfils F; Sainte-Beuve J; Intapun J; Granet F; Vaysse L; Dubreucq É J Appl Microbiol; 2018 Feb; 124(2):444-456. PubMed ID: 29222942 [TBL] [Abstract][Full Text] [Related]
17. Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). Havanapan PO; Bourchookarn A; Ketterman AJ; Krittanai C J Proteomics; 2016 Jan; 131():82-92. PubMed ID: 26477389 [TBL] [Abstract][Full Text] [Related]
19. Interactions of REF1 and SRPP1 rubber particle proteins from Hevea brasiliensis with synthetic phospholipids: Effect of charge and size of lipid headgroup. Wadeesirisak K; Castano S; Vaysse L; Bonfils F; Peruch F; Rattanaporn K; Liengprayoon S; Lecomte S; Bottier C Biochem Biophys Res Commun; 2023 Oct; 679():205-214. PubMed ID: 37708579 [TBL] [Abstract][Full Text] [Related]
20. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex. Wang S; Liu J; Wu Y; You Y; He J; Zhang J; Zhang L; Dong Y Anal Biochem; 2016 Apr; 499():34-42. PubMed ID: 26844871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]