These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37690757)

  • 21. Mitigation of arsenic accumulation in rice with water management and silicon fertilization.
    Li RY; Stroud JL; Ma JF; McGrath SP; Zhao FJ
    Environ Sci Technol; 2009 May; 43(10):3778-83. PubMed ID: 19544887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings.
    Das S; Majumder B; Biswas AK
    Ecotoxicology; 2022 Apr; 31(3):468-489. PubMed ID: 35122561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions.
    Islam S; Rahman MM; Naidu R
    Chemosphere; 2019 Jan; 214():606-613. PubMed ID: 30290361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice.
    Li N; Feng A; Liu N; Jiang Z; Wei S
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20370-20379. PubMed ID: 32240508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.
    Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H
    Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.
    Wang HY; Wen SL; Chen P; Zhang L; Cen K; Sun GX
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3781-8. PubMed ID: 26498817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of topdressing silicon fertilizer at key stages on uptake and accumulation of arsenic in rice.
    Zeng P; Zhou H; Deng P; Gu J; Liao B
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):31309-31319. PubMed ID: 36445527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice.
    Xiao Z; Peng M; Mei Y; Tan L; Liang Y
    Environ Pollut; 2021 Aug; 283():117107. PubMed ID: 33862339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.).
    Han R; Wang Z; Wang S; Sun G; Xiao Z; Hao Y; Nriagu J; Teng HH; Li G
    Sci Total Environ; 2023 Oct; 896():165226. PubMed ID: 37392888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-site field trials demonstrate the effectiveness of silicon fertilizer on suppressing dimethylarsenate accumulation and mitigating straighthead disease in rice.
    Gao A; Chen C; Zhang H; Yang B; Yu Y; Zhang W; Zhao FJ
    Environ Pollut; 2023 Jan; 316(Pt 1):120515. PubMed ID: 36309301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant.
    Etesami H; Jeong BR; Glick BR
    Front Plant Sci; 2021; 12():699618. PubMed ID: 34276750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source.
    Rezakhani L; Motesharezadeh B; Tehrani MM; Etesami H; Mirseyed Hosseini H
    Ecotoxicol Environ Saf; 2019 May; 173():504-513. PubMed ID: 30802739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicon as a potential limiting factor for phosphorus availability in paddy soils.
    Schaller J; Wu B; Amelung W; Hu Z; Stein M; Lehndorff E; Obst M
    Sci Rep; 2022 Sep; 12(1):16329. PubMed ID: 36175535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.).
    Kumarathilaka P; Bundschuh J; Seneweera S; Marchuk A; Ok YS
    Environ Pollut; 2021 Oct; 286():117661. PubMed ID: 34438503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of As and Cd accumulation in rice by simultaneous application of lime or gypsum with Si-rich materials.
    Wei X; Zhang P; Zhan Q; Hong L; Bocharnikova E; Matichenkov V
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):7271-7280. PubMed ID: 33029778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicate solubilizing and plant growth promoting bacteria interact with biogenic silica to impart heat stress tolerance in rice by modulating physiology and gene expression.
    Chaganti C; Phule AS; Chandran LP; Sonth B; Kavuru VPB; Govindannagari R; Sundaram RM
    Front Microbiol; 2023; 14():1168415. PubMed ID: 37520375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significant difference in the efficacies of silicon application regimes on cadmium species and environmental risks in rice rhizosphere.
    Pan B; Wang W; Liu B; Cai K; Tian J; Cai Y
    Environ Pollut; 2023 Jun; 327():121521. PubMed ID: 36997144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silicon enhances abundances of reducing microbes in rhizoplane and decreases arsenite uptake by rice (Oryza sativa L.).
    Gao Z; Chen H; Zhang X; Xiao Z; Fan X; Yin C; Tang X; Han FX; Liang Y
    Environ Pollut; 2022 Aug; 306():119405. PubMed ID: 35523383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using an improved Si-rich husk ash to decrease inorganic arsenic in rice grain.
    Wang H; Wang X; Peng B
    Sci Total Environ; 2022 Jan; 803():150102. PubMed ID: 34525682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Silicon Application on Uptake of Arsenic and Phosphorus and Formation of Iron Plaque in Rice Seedlings Grown in an Arsenic-Contaminated Soil.
    Li R; Zhou Z; Xu X; Xie X; Zhang Q; Liu Y
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):133-139. PubMed ID: 30666387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.