These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37690796)

  • 1. Interhelical E@g-N@a interactions modulate coiled coil stability within a de novo set of orthogonal peptide heterodimers.
    Perez AR; Lee Y; Colvin ME; Merg AD
    J Pept Sci; 2024 Feb; 30(2):e3540. PubMed ID: 37690796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Dynamics of Asparagine at Coiled-Coil Interfaces.
    Thomas F; Niitsu A; Oregioni A; Bartlett GJ; Woolfson DN
    Biochemistry; 2017 Dec; 56(50):6544-6554. PubMed ID: 29166010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of interhelical electrostatic repulsions between glutamic acid residues in controlling the dimerization and stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Monera OD; Kay CM; Hodges RS
    J Biol Chem; 1995 Oct; 270(43):25495-506. PubMed ID: 7592719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers.
    Gradišar H; Jerala R
    J Pept Sci; 2011 Feb; 17(2):100-6. PubMed ID: 21234981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Mol Biol; 1998 Nov; 283(5):993-1012. PubMed ID: 9799639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide.
    Meier M; Lustig A; Aebi U; Burkhard P
    J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties.
    Aronsson C; Dånmark S; Zhou F; Öberg P; Enander K; Su H; Aili D
    Sci Rep; 2015 Sep; 5():14063. PubMed ID: 26370878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure.
    McClain DL; Gurnon DG; Oakley MG
    J Mol Biol; 2002 Nov; 324(2):257-70. PubMed ID: 12441105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing Fluorine-Containing Amino Acids as an Orthogonal Tool in Coiled Coil Assembly.
    Hohmann T; Dubatouka P; Pfeifer K; Koksch B
    Biomacromolecules; 2023 Jul; 24(7):3357-3369. PubMed ID: 37379337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability.
    Zhou NE; Kay CM; Hodges RS
    Protein Eng; 1994 Nov; 7(11):1365-72. PubMed ID: 7700868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.
    Fletcher JM; Bartlett GJ; Boyle AL; Danon JJ; Rush LE; Lupas AN; Woolfson DN
    ACS Chem Biol; 2017 Feb; 12(2):528-538. PubMed ID: 28026921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology.
    Fletcher JM; Boyle AL; Bruning M; Bartlett GJ; Vincent TL; Zaccai NR; Armstrong CT; Bromley EH; Booth PJ; Brady RL; Thomson AR; Woolfson DN
    ACS Synth Biol; 2012 Jun; 1(6):240-50. PubMed ID: 23651206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil.
    Zhou NE; Kay CM; Hodges RS
    Biochemistry; 1993 Mar; 32(12):3178-87. PubMed ID: 8457578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation of buried lysine and surface polar residues in a designed heterodimeric coiled coil.
    Campbell KM; Lumb KJ
    Biochemistry; 2002 Jun; 41(22):7169-75. PubMed ID: 12033951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Prediction and Design for Creating Iteratively Larger Heterospecific Coiled Coil Sets.
    Crooks RO; Lathbridge A; Panek AS; Mason JM
    Biochemistry; 2017 Mar; 56(11):1573-1584. PubMed ID: 28267310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the energetic contribution of interhelical Coulombic interactions for coiled coil helix orientation specificity.
    McClain DL; Binfet JP; Oakley MG
    J Mol Biol; 2001 Oct; 313(2):371-83. PubMed ID: 11800563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.