BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37690998)

  • 1. Generation of Cannabigerolic Acid Derivatives and Their Precursors by Using the Promiscuity of the Aromatic Prenyltransferase NphB.
    Spitzer S; Wloka J; Pietruszka J; Kayser O
    Chembiochem; 2023 Nov; 24(22):e202300441. PubMed ID: 37690998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering yeasts as platform organisms for cannabinoid biosynthesis.
    Zirpel B; Degenhardt F; Martin C; Kayser O; Stehle F
    J Biotechnol; 2017 Oct; 259():204-212. PubMed ID: 28694184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB.
    Johnson BP; Scull EM; Dimas DA; Bavineni T; Bandari C; Batchev AL; Gardner ED; Nimmo SL; Singh S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4383-4395. PubMed ID: 32189045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cannabinoid production in Saccharomyces cerevisiae.
    Schmidt C; Aras M; Kayser O
    Biotechnol J; 2024 Feb; 19(2):e2300507. PubMed ID: 38403455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-Dependent Alteration in the C- and O-Prenylation Specificities of Cannabis Prenyltransferase.
    Tanaya R; Kodama T; Maneenet J; Yasuno Y; Nakayama A; Shinada T; Takahashi H; Ito T; Morita H; Awale S; Taura F
    Biol Pharm Bull; 2024; 47(2):449-453. PubMed ID: 38369346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities.
    Kumano T; Richard SB; Noel JP; Nishiyama M; Kuzuyama T
    Bioorg Med Chem; 2008 Sep; 16(17):8117-26. PubMed ID: 18682327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foldseek reveals a CBGA prenylating enzyme GlyMa_02G168000 from Glycine max.
    Jordan EN; Schmidt C; Kayser O
    Biochem Biophys Res Commun; 2024 Feb; 696():149471. PubMed ID: 38219483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in
    Gülck T; Booth JK; Carvalho Â; Khakimov B; Crocoll C; Motawia MS; Møller BL; Bohlmann J; Gallage NJ
    J Nat Prod; 2020 Oct; 83(10):2877-2893. PubMed ID: 33000946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediate, olivetolic acid, and its alkyl-chain derivatives.
    Lee YE; Kodama T; Morita H
    J Nat Med; 2023 Mar; 77(2):298-305. PubMed ID: 36572832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of aromatic prenylation by NphB.
    Yang Y; Miao Y; Wang B; Cui G; Merz KM
    Biochemistry; 2012 Mar; 51(12):2606-18. PubMed ID: 22385275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics.
    Qian S; Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2019 May; 116(5):1116-1127. PubMed ID: 30659582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids.
    Ozaki T; Mishima S; Nishiyama M; Kuzuyama T
    J Antibiot (Tokyo); 2009 Jul; 62(7):385-92. PubMed ID: 19557032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast.
    Thomas F; Schmidt C; Kayser O
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9551-9563. PubMed ID: 33043390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases.
    Yu X; Xie X; Li SM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):737-48. PubMed ID: 21643703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast.
    Luo X; Reiter MA; d'Espaux L; Wong J; Denby CM; Lechner A; Zhang Y; Grzybowski AT; Harth S; Lin W; Lee H; Yu C; Shin J; Deng K; Benites VT; Wang G; Baidoo EEK; Chen Y; Dev I; Petzold CJ; Keasling JD
    Nature; 2019 Mar; 567(7746):123-126. PubMed ID: 30814733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an efficient yeast platform for cannabigerolic acid biosynthesis.
    Zhang Y; Guo J; Gao P; Yan W; Shen J; Luo X; Keasling JD
    Metab Eng; 2023 Nov; 80():232-240. PubMed ID: 37890610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase.
    Chen R; Gao B; Liu X; Ruan F; Zhang Y; Lou J; Feng K; Wunsch C; Li SM; Dai J; Sun F
    Nat Chem Biol; 2017 Feb; 13(2):226-234. PubMed ID: 27992881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol.
    Fellermeier M; Zenk MH
    FEBS Lett; 1998 May; 427(2):283-5. PubMed ID: 9607329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Titer Production of Olivetolic Acid and Analogs in Engineered Fungal Host Using a Nonplant Biosynthetic Pathway.
    Okorafor IC; Chen M; Tang Y
    ACS Synth Biol; 2021 Sep; 10(9):2159-2166. PubMed ID: 34415146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinvestigation of the substrate specificity of a reverse prenyltransferase NotF from Aspergillus sp. MF297-2.
    Yang K; Li SM; Liu X; Fan A
    Arch Microbiol; 2020 Aug; 202(6):1419-1424. PubMed ID: 32185409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.