These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries. Su Z; Guo H; Zhao C Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. Xu T; Wang D; Li Z; Chen Z; Zhang J; Hu T; Zhang X; Shen L Nanomicro Lett; 2022 Jun; 14(1):126. PubMed ID: 35699769 [TBL] [Abstract][Full Text] [Related]
6. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications. Yuan S; Huang X; Kong T; Yan L; Wang Y Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018 [TBL] [Abstract][Full Text] [Related]
7. Proton-Assisted Aqueous Manganese-Ion Battery Chemistry. Bi S; Zhang Y; Deng S; Tie Z; Niu Z Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202200809. PubMed ID: 35192232 [TBL] [Abstract][Full Text] [Related]
8. Towards fast-charging technologies in Li Huang H; Niederberger M Nanoscale; 2019 Nov; 11(41):19225-19240. PubMed ID: 31532434 [TBL] [Abstract][Full Text] [Related]
9. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165 [TBL] [Abstract][Full Text] [Related]
10. Aqueous Organic Batteries Using the Proton as a Charge Carrier. Shi M; Das P; Wu ZS; Liu TG; Zhang X Adv Mater; 2023 Oct; 35(42):e2302199. PubMed ID: 37253345 [TBL] [Abstract][Full Text] [Related]
11. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Lu Y; Ni Y; Chen J Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205 [TBL] [Abstract][Full Text] [Related]
12. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. Xie J; Zhang Q Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095 [TBL] [Abstract][Full Text] [Related]
13. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries. Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096 [TBL] [Abstract][Full Text] [Related]
14. MXene as a Charge Storage Host. Okubo M; Sugahara A; Kajiyama S; Yamada A Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564 [TBL] [Abstract][Full Text] [Related]
15. Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage. Gan Z; Yin J; Xu X; Cheng Y; Yu T ACS Nano; 2022 Apr; 16(4):5131-5152. PubMed ID: 35293209 [TBL] [Abstract][Full Text] [Related]
16. Ether-based electrolytes for sodium ion batteries. Li Y; Wu F; Li Y; Liu M; Feng X; Bai Y; Wu C Chem Soc Rev; 2022 Jun; 51(11):4484-4536. PubMed ID: 35543354 [TBL] [Abstract][Full Text] [Related]
17. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries. Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163 [TBL] [Abstract][Full Text] [Related]
18. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
19. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in Layered Ti Xiong D; Li X; Bai Z; Lu S Small; 2018 Apr; 14(17):e1703419. PubMed ID: 29399994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]