These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37691017)

  • 1. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing.
    Katilie CJ; DeGreeff LE; Sharpes CE; Best EM; Buckley PE; Gadberry JD; Maughan MN
    J Forensic Sci; 2023 Nov; 68(6):2021-2036. PubMed ID: 37691017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device.
    DeGreeff LE; Peranich K
    Forensic Sci Int; 2021 Dec; 329():111059. PubMed ID: 34715445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of membrane properties on the odor emanating from training aids for explosive-detecting canines.
    Upadhyaya H; Goodpaster JV
    Anal Bioanal Chem; 2024 Jul; 416(18):4219-4225. PubMed ID: 38847872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Headspace analysis of potassium chlorate using on-fiber SPME derivatization coupled with GC/MS.
    Crespo Cajigas JM; Perez-Almodovar L; DeGreeff LE
    Talanta; 2019 Dec; 205():120127. PubMed ID: 31450483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards maintaining canine training aid integrity: Effects of environmental factors and operational use on the triacetone triperoxide polymer odor capture-and-release system.
    Cropper E; Riley P; Simon AG
    J Forensic Sci; 2024 May; 69(3):888-904. PubMed ID: 38528830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of vaporous ammonia by online derivatization with gas chromatography - mass spectrometry with applications to ammonium nitrate-based explosives.
    Katilie CJ; Simon AG; DeGreeff LE
    Talanta; 2019 Feb; 193():87-92. PubMed ID: 30368302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry.
    Lubrano AL; Andrews B; Hammond M; Collins GE; Rose-Pehrsson S
    J Chromatogr A; 2016 Jan; 1429():8-12. PubMed ID: 26718189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola.
    Simon AG; Mills DK; Furton KG
    Talanta; 2017 Jun; 168():320-328. PubMed ID: 28391862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canine detection of explosives under adverse environmental conditions with and without acclimation training.
    Kane SA; Fernandez LS; Huff DE; Prada-Tiedemann PA; Hall NJ
    PLoS One; 2024; 19(2):e0297538. PubMed ID: 38381723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace Detection and Chemical Analysis of Homemade Fuel-Oxidizer Mixture Explosives: Emerging Challenges and Perspectives.
    Forbes TP; Krauss ST; Gillen G
    Trends Analyt Chem; 2020 Oct; 131():. PubMed ID: 34135538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced.
    Cerreta MM; Furton KG
    Forensic Sci Int; 2015 Jun; 251():107-14. PubMed ID: 25898183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid changes in profiles from stored materials used in scent training of explosive detection dogs.
    Mörén L; Bergström F; Brantlind M; Wingfors H
    Sci Justice; 2022 Sep; 62(5):657-665. PubMed ID: 36336459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odor mixture training enhances dogs' olfactory detection of Home-Made Explosive precursors.
    Hall NJ; Wynne CDL
    Heliyon; 2018 Dec; 4(12):e00947. PubMed ID: 30582032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans.
    Lorenzo N; Wan T; Harper RJ; Hsu YL; Chow M; Rose S; Furton KG
    Anal Bioanal Chem; 2003 Aug; 376(8):1212-24. PubMed ID: 12845400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Canine Detection of Mass Storage Devices: A Study of Volatile Organic Compounds Emanating from Electronic Devices Using Solid Phase Microextraction.
    DeGreeff LE; Cerreta M; Rispoli M
    J Forensic Sci; 2017 Nov; 62(6):1613-1616. PubMed ID: 28597921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.