These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37691029)

  • 1. Efficient qualitative risk assessment of pipelines using relative risk score based on machine learning.
    Vanitha CN; Easwaramoorthy SV; Krishna SA; Cho J
    Sci Rep; 2023 Sep; 13(1):14918. PubMed ID: 37691029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion.
    Mahmoodzadeh Z; Wu KY; Lopez Droguett E; Mosleh A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Leakage and Diffusion Characteristics and Hazard Range Determination of Buried Hydrogen-Blended Natural Gas Pipeline Based on CFD.
    Bu F; He Y; Lu Q; Liu M; Bai J; Lv Z; Leng C
    ACS Omega; 2024 Sep; 9(37):39202-39218. PubMed ID: 39310181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk-based underground pipeline safety management considering corrosion effect.
    Shin S; Lee G; Ahmed U; Lee Y; Na J; Han C
    J Hazard Mater; 2018 Jan; 342():279-289. PubMed ID: 28843797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental risk of oil pipeline accidents.
    Lu H; Xi D; Qin G
    Sci Total Environ; 2023 May; 874():162386. PubMed ID: 36863588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge.
    Spandonidis C; Theodoropoulos P; Giannopoulos F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel neural network-based framework to estimate oil and gas pipelines life with missing input parameters.
    Shaik NB; Jongkittinarukorn K; Benjapolakul W; Bingi K
    Sci Rep; 2024 Feb; 14(1):4511. PubMed ID: 38402261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating natural gas emissions from underground pipelines using surface concentration measurements
    Cho Y; Ulrich BA; Zimmerle DJ; Smits KM
    Environ Pollut; 2020 Dec; 267():115514. PubMed ID: 33254704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array.
    Sampath S; Bhattacharya B; Aryan P; Sohn H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines.
    Wen H; Liu L; Zhang J; Hu J; Huang X
    J Environ Manage; 2023 Sep; 342():118177. PubMed ID: 37210819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of failure type in corroded pipelines: a bayesian probabilistic approach.
    Breton T; Sanchez-Gheno JC; Alamilla JL; Alvarez-Ramirez J
    J Hazard Mater; 2010 Jul; 179(1-3):628-34. PubMed ID: 20378244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature extraction and pattern recognition of gas pipeline flow noise signals in a strong noisy background.
    Liu E; Lu C; Wen Z; Hao T; Lu X; Wang L
    PeerJ Comput Sci; 2024; 10():e2087. PubMed ID: 38983200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach.
    Licata M; Aspinall MD; Bandala M; Cave FD; Conway S; Gerta D; Parker HMO; Roberts NJ; Taylor GC; Joyce MJ
    Sci Rep; 2020 Jan; 10(1):1486. PubMed ID: 32001726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms.
    Ullah N; Ahmed Z; Kim JM
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An energy-aware and Q-learning-based area coverage for oil pipeline monitoring systems using sensors and Internet of Things.
    Rahmani AM; Ali S; Malik MH; Yousefpoor E; Yousefpoor MS; Mousavi A; Khan F; Hosseinzadeh M
    Sci Rep; 2022 Jun; 12(1):9638. PubMed ID: 35688867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental research on in-situ auto-monitoring for underground sewage pipeline leakage].
    Guo L; Jia YG; Fu TF; Liu XL; Zhao ZK
    Huan Jing Ke Xue; 2012 Dec; 33(12):4352-60. PubMed ID: 23379164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction.
    Radzi SFM; Karim MKA; Saripan MI; Rahman MAA; Isa INC; Ibahim MJ
    J Pers Med; 2021 Sep; 11(10):. PubMed ID: 34683118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines.
    Wang Z; Li Y; Ren J; Xu W; Yang L
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):52204-52219. PubMed ID: 35260983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of sand particles detection inside a pipeline by photon radiography.
    Jamshidi V
    Appl Radiat Isot; 2023 Sep; 199():110876. PubMed ID: 37302299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning-based ground sink susceptibility evaluation using underground pipeline data in Korean urban area.
    Park JH; Kang J; Kang J; Mun D
    Sci Rep; 2022 Dec; 12(1):20911. PubMed ID: 36463331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.