These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37691086)

  • 1. Full-Control and Switching of Optical Fano Resonance by Continuum State Engineering.
    Ko JH; Park JH; Yoo YJ; Chang S; Kang J; Wu A; Yang F; Kim S; Jeon HG; Song YM
    Adv Sci (Weinh); 2023 Nov; 10(32):e2304310. PubMed ID: 37691086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-Tailored Fano Interference in Plasmonic Crystals: A Mueller Matrix Model of Anisotropic Fano Resonance.
    Ray SK; Chandel S; Singh AK; Kumar A; Mandal A; Misra S; Mitra P; Ghosh N
    ACS Nano; 2017 Feb; 11(2):1641-1648. PubMed ID: 28071887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity.
    Dong G; Wang Y; Zhang X
    Opt Lett; 2018 Dec; 43(24):5977-5980. PubMed ID: 30547984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CROW-based Fano structures for all optical switching devices.
    Rezaei MH; Yavari MH
    Appl Opt; 2022 Apr; 61(11):3156-3164. PubMed ID: 35471293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control.
    Ott C; Kaldun A; Raith P; Meyer K; Laux M; Evers J; Keitel CH; Greene CH; Pfeifer T
    Science; 2013 May; 340(6133):716-20. PubMed ID: 23661754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral shaping of ring resonator transmission response.
    Yadav M; Noh JW; Hjelme DR; Aksnes A
    Opt Express; 2021 Feb; 29(3):3764-3771. PubMed ID: 33770969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings.
    Sreekanth KV; Medwal R; Srivastava YK; Manjappa M; Rawat RS; Singh R
    Nano Lett; 2021 Dec; 21(23):10070-10075. PubMed ID: 34802245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving Fano resonance with an ultra-high slope rate by silicon nitride CROW embedded in a Mach-Zehnder interferometer.
    Cheng W; Lin D; Liu P; Yun B; Lu M; Shi S; Hu G; Cui Y
    Opt Express; 2022 Dec; 30(26):46147-46156. PubMed ID: 36558576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.
    Zhang Y; Zhang X; Wang Y; Zhu R; Gai Y; Liu X; Yuan P
    Opt Express; 2013 Apr; 21(7):8570-86. PubMed ID: 23571947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full manipulation of transparency and absorption through direct tuning of dark modes in high-Q Fano metamaterials.
    Kim S; Hong D; Sattorov M; Kim S; Yoo YJ; Park SY; Park GS
    Opt Express; 2022 Jan; 30(3):3443-3454. PubMed ID: 35209602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Fano Resonance Effects in Graphene-Grating Composite Structures.
    Cui D; Liu J; Yang H
    Comput Intell Neurosci; 2022; 2022():8446093. PubMed ID: 36093476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Fano resonances in multilayer dielectric gratings towards optical bistable devices.
    Hoang TT; Ngo QM; Vu DL; Nguyen HPT
    Sci Rep; 2018 Nov; 8(1):16404. PubMed ID: 30401800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q Fano resonances in all-dielectric metastructures for enhanced optical biosensing applications.
    Chen H; Fan X; Fang W; Zhang B; Cao S; Sun Q; Wang D; Niu H; Li C; Wei X; Bai C; Kumar S
    Biomed Opt Express; 2024 Jan; 15(1):294-305. PubMed ID: 38223189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor.
    Wang M; Zhang M; Wang Y; Zhao R; Yan S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.
    Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W
    Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications.
    Rohimah S; Tian H; Wang J; Chen J; Li J; Liu X; Cui J; Hao Y
    Appl Opt; 2022 Feb; 61(6):1275-1283. PubMed ID: 35201006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.