These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37691475)
1. "AMP plus": Immunostimulant-Inspired Design Based on Chemotactic Motif Zhu Y; Xu Y; Yan J; Fang Y; Dong N; Shan A ACS Appl Mater Interfaces; 2023 Sep; 15(37):43563-43579. PubMed ID: 37691475 [TBL] [Abstract][Full Text] [Related]
2. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Guryanova SV; Ovchinnikova TV Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269641 [TBL] [Abstract][Full Text] [Related]
3. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Zhu Y; Akhtar MU; Li B; Chou S; Shao C; Li J; Shan A Acta Biomater; 2022 Nov; 153():557-572. PubMed ID: 36115654 [TBL] [Abstract][Full Text] [Related]
4. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Miao X; Zhou T; Zhang J; Xu J; Guo X; Hu H; Zhang X; Hu M; Li J; Yang W; Xie J; Xu Z; Mou L Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129532. PubMed ID: 31953126 [TBL] [Abstract][Full Text] [Related]
5. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698 [TBL] [Abstract][Full Text] [Related]
6. Bobde SS; Alsaab FM; Wang G; Van Hoek ML Front Microbiol; 2021; 12():715246. PubMed ID: 34867843 [TBL] [Abstract][Full Text] [Related]
7. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Lv S; Wang J; You R; Liu S; Ding Y; Hadianamrei R; Tomeh MA; Pan F; Cai Z; Zhao X Biomater Sci; 2022 Aug; 10(17):4848-4865. PubMed ID: 35861280 [TBL] [Abstract][Full Text] [Related]
8. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. Slezina MP; Istomina EA; Kulakovskaya EV; Korostyleva TV; Odintsova TI Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955519 [TBL] [Abstract][Full Text] [Related]
9. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Mai S; Mauger MT; Niu LN; Barnes JB; Kao S; Bergeron BE; Ling JQ; Tay FR Acta Biomater; 2017 Feb; 49():16-35. PubMed ID: 27845274 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Duarte-Mata DI; Salinas-Carmona MC Front Immunol; 2023; 14():1119574. PubMed ID: 37056758 [TBL] [Abstract][Full Text] [Related]
11. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development. Zhang M; Ouyang J; Fu L; Xu C; Ge Y; Sun S; Li X; Lai S; Ke H; Yuan B; Yang K; Yu H; Gao L; Wang Y J Med Chem; 2022 Nov; 65(21):14701-14720. PubMed ID: 36283984 [TBL] [Abstract][Full Text] [Related]
13. A novel antimicrobial peptide derived from membrane-proximal external region of human immunodeficiency virus type 1. He X; Zhang H; Shi Y; Gong X; Guan S; Yin H; Yang L; Yu Y; Kuai Z; Liu D; Hua R; Wang S; Shan Y Biochimie; 2016 Apr; 123():110-6. PubMed ID: 26875765 [TBL] [Abstract][Full Text] [Related]
14. Discovery and Mechanism of Action of a Novel Antimicrobial Peptide from an Earthworm. Wu Y; Deng S; Wang X; Thunders M; Qiu J; Li Y Microbiol Spectr; 2023 Feb; 11(1):e0320622. PubMed ID: 36602379 [TBL] [Abstract][Full Text] [Related]
15. Deciphering Structure-Function Relationship Unveils Salt-Resistant Mode of Action of a Potent MRSA-Inhibiting Antimicrobial Peptide, RR14. Kao CC; Lin TL; Lin CJ; Tseng TS J Bacteriol; 2022 Dec; 204(12):e0031222. PubMed ID: 36377870 [TBL] [Abstract][Full Text] [Related]
16. Cathelicidin Peptides Restrict Bacterial Growth via Membrane Perturbation and Induction of Reactive Oxygen Species. Rowe-Magnus DA; Kao AY; Prieto AC; Pu M; Kao C mBio; 2019 Sep; 10(5):. PubMed ID: 31506312 [TBL] [Abstract][Full Text] [Related]
17. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
18. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864 [TBL] [Abstract][Full Text] [Related]
19. Cell-Penetrating Antimicrobial Peptides Derived from an Atypical Staphylococcal δ-Toxin. Deeyagahage K; Ruzzini A Microbiol Spectr; 2021 Dec; 9(3):e0158421. PubMed ID: 34937169 [TBL] [Abstract][Full Text] [Related]
20. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Silva ON; de la Fuente-Núñez C; Haney EF; Fensterseifer IC; Ribeiro SM; Porto WF; Brown P; Faria-Junior C; Rezende TM; Moreno SE; Lu TK; Hancock RE; Franco OL Sci Rep; 2016 Nov; 6():35465. PubMed ID: 27804992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]