These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37691475)
41. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
42. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Wang J; Dou X; Song J; Lyu Y; Zhu X; Xu L; Li W; Shan A Med Res Rev; 2019 May; 39(3):831-859. PubMed ID: 30353555 [TBL] [Abstract][Full Text] [Related]
43. Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616 [TBL] [Abstract][Full Text] [Related]
44. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Irazazabal LN; Porto WF; Fensterseifer ICM; Alves ESF; Matos CO; Menezes ACS; Felício MR; Gonçalves S; Santos NC; Ribeiro SM; Humblot V; Lião LM; Ladram A; Franco OL Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):178-190. PubMed ID: 30463701 [TBL] [Abstract][Full Text] [Related]
45. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Mazurkiewicz-Pisarek A; Baran J; Ciach T Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240379 [TBL] [Abstract][Full Text] [Related]
46. Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Song X; Pan H; Wang H; Liao X; Sun D; Xu K; Chen T; Zhang X; Wu M; Wu D; Gao Y Acta Biomater; 2020 Jun; 109():208-219. PubMed ID: 32276085 [TBL] [Abstract][Full Text] [Related]
48. Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Rončević T; Gerdol M; Mardirossian M; Maleš M; Cvjetan S; Benincasa M; Maravić A; Gajski G; Krce L; Aviani I; Hrabar J; Trumbić Ž; Derks M; Pallavicini A; Weingarth M; Zoranić L; Tossi A; Mladineo I Acta Biomater; 2022 Jul; 146():131-144. PubMed ID: 35470073 [TBL] [Abstract][Full Text] [Related]
49. Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics. Jadhav K; Singh R; Ray E; Singh AK; Verma RK Curr Protein Pept Sci; 2022; 23(10):643-656. PubMed ID: 35619262 [TBL] [Abstract][Full Text] [Related]
50. Main-Chain Cationic Bile Acid Polymers Mimicking Facially Amphiphilic Antimicrobial Peptides. Lin C; Ma Z; Gao Y; Le M; Shi Z; Qi D; Ma JC; Cui ZK; Wang L; Jia YG ACS Appl Mater Interfaces; 2023 Jul; 15(28):33444-33456. PubMed ID: 37400427 [TBL] [Abstract][Full Text] [Related]
51. Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing. Xu X; Ding Y; Hadianamrei R; Lv S; You R; Pan F; Zhang P; Wang N; Zhao X Colloids Surf B Biointerfaces; 2022 Dec; 220():112887. PubMed ID: 36191410 [TBL] [Abstract][Full Text] [Related]
52. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Zhu X; Dong N; Wang Z; Ma Z; Zhang L; Ma Q; Shan A Acta Biomater; 2014 Jan; 10(1):244-57. PubMed ID: 24021230 [TBL] [Abstract][Full Text] [Related]
53. Synthetic Antimicrobial Immunomodulatory Peptides: Ongoing Studies and Clinical Trials. Lesiuk M; Paduszyńska M; Greber KE Antibiotics (Basel); 2022 Aug; 11(8):. PubMed ID: 36009931 [TBL] [Abstract][Full Text] [Related]
54. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Drayton M; Deisinger JP; Ludwig KC; Raheem N; Müller A; Schneider T; Straus SK Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681833 [TBL] [Abstract][Full Text] [Related]
55. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides. Shao C; Tian H; Wang T; Wang Z; Chou S; Shan A; Cheng B Acta Biomater; 2018 Mar; 69():243-255. PubMed ID: 29355714 [TBL] [Abstract][Full Text] [Related]
56. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Gera S; Kankuri E; Kogermann K Pharmacol Ther; 2022 Apr; 232():107990. PubMed ID: 34592202 [TBL] [Abstract][Full Text] [Related]
57. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185 [TBL] [Abstract][Full Text] [Related]
58. The protective effect of fish-derived cathelicidins on bacterial infections in zebrafish, Danio rerio. Chen C; Wang A; Zhang F; Zhang M; Yang H; Li J; Su P; Chen Y; Yu H; Wang Y Fish Shellfish Immunol; 2019 Sep; 92():519-527. PubMed ID: 31202967 [TBL] [Abstract][Full Text] [Related]
59. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Khara JS; Obuobi S; Wang Y; Hamilton MS; Robertson BD; Newton SM; Yang YY; Langford PR; Ee PLR Acta Biomater; 2017 Jul; 57():103-114. PubMed ID: 28457962 [TBL] [Abstract][Full Text] [Related]
60. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets. Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]