These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37691639)
1. Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation. Schwab A; Wesdorp MA; Xu J; Abinzano F; Loebel C; Falandt M; Levato R; Eglin D; Narcisi R; Stoddart MJ; Malda J; Burdick JA; D'Este M; van Osch GJVM J Orthop Translat; 2023 Jul; 41():42-53. PubMed ID: 37691639 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249 [TBL] [Abstract][Full Text] [Related]
3. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346 [TBL] [Abstract][Full Text] [Related]
4. Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks. Jahangir S; Vecstaudza J; Augurio A; Canciani E; Stipniece L; Locs J; Alini M; Serra T Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005143 [TBL] [Abstract][Full Text] [Related]
5. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. Mouser VHM; Dautzenberg NMM; Levato R; van Rijen MHP; Dhert WJA; Malda J; Gawlitta D ALTEX; 2018; 35(1):65-76. PubMed ID: 28884783 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair. Galarraga JH; Locke RC; Witherel CE; Stoeckl BD; Castilho M; Mauck RL; Malda J; Levato R; Burdick JA Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34788748 [TBL] [Abstract][Full Text] [Related]
7. Characteristic and Chondrogenic Differentiation Analysis of Hybrid Hydrogels Comprised of Hyaluronic Acid Methacryloyl (HAMA), Gelatin Methacryloyl (GelMA), and the Acrylate-Functionalized Nano-Silica Crosslinker. Nedunchezian S; Wu CW; Wu SC; Chen CH; Chang JK; Wang CK Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631885 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Wang X; Song X; Li T; Chen J; Cheng G; Yang L; Chen C Am J Sports Med; 2019 Aug; 47(10):2316-2326. PubMed ID: 31233332 [TBL] [Abstract][Full Text] [Related]
9. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Staubli F; Stoddart MJ; D'Este M; Schwab A Acta Biomater; 2022 Apr; 143():253-265. PubMed ID: 35240315 [TBL] [Abstract][Full Text] [Related]
10. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Yang J; Liu Y; He L; Wang Q; Wang L; Yuan T; Xiao Y; Fan Y; Zhang X Acta Biomater; 2018 Jul; 74():156-167. PubMed ID: 29734010 [TBL] [Abstract][Full Text] [Related]
11. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Wu H; Shang Y; Sun W; Ouyang X; Zhou W; Lu J; Yang S; Wei W; Yao X; Wang X; Zhang X; Chen Y; He Q; Yang Z; Ouyang H Bioact Mater; 2023 Jan; 19():88-102. PubMed ID: 35441114 [TBL] [Abstract][Full Text] [Related]
12. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741 [TBL] [Abstract][Full Text] [Related]
13. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Behrendt P; Ladner Y; Stoddart MJ; Lippross S; Alini M; Eglin D; Armiento AR Am J Sports Med; 2020 Jan; 48(1):210-221. PubMed ID: 31877102 [TBL] [Abstract][Full Text] [Related]
14. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Schneider MC; Chu S; Randolph MA; Bryant SJ Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256 [TBL] [Abstract][Full Text] [Related]
15. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink. Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617 [TBL] [Abstract][Full Text] [Related]
16. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion. Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295 [TBL] [Abstract][Full Text] [Related]
19. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142 [TBL] [Abstract][Full Text] [Related]
20. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]