BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 37692197)

  • 21. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing.
    Fu H; Zhang D; Zeng J; Fu Q; Chen Z; Sun X; Yang Y; Li S; Chen M
    Int J Bioprint; 2023; 9(2):674. PubMed ID: 37065662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements.
    Kolimi P; Narala S; Nyavanandi D; Youssef AAA; Dudhipala N
    Cells; 2022 Aug; 11(15):. PubMed ID: 35954282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinspired 3D-Printed MXene and Spidroin-Based Near-Infrared Light-Responsive Microneedle Scaffolds for Efficient Wound Management.
    Shao Y; Dong K; Lu X; Gao B; He B
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56525-56534. PubMed ID: 36520168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed electronics with nanomaterials.
    Słoma M
    Nanoscale; 2023 Mar; 15(12):5623-5648. PubMed ID: 36880539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration.
    Wu H; Chen J; Zhao P; Liu M; Xie F; Ma X
    Membranes (Basel); 2023 Sep; 13(9):. PubMed ID: 37755224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing of Diatomite Incorporated Composite Scaffolds for Skin Repair of Deep Burn Wounds.
    Ma J; Wu J; Zhang H; Du L; Zhuang H; Zhang Z; Ma B; Chang J; Wu C
    Int J Bioprint; 2022; 8(3):580. PubMed ID: 36105135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application.
    Biranje SS; Sun J; Cheng L; Cheng Y; Shi Y; Yu S; Jiao H; Zhang M; Lu X; Han W; Wang Q; Zhang Z; Liu J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3792-3808. PubMed ID: 35037458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printed wound constructs for skin tissue engineering: A systematic review in experimental animal models.
    de Souza A; Martignago CCS; Santo GDE; Sousa KDSJ; Cruz MA; Amaral GO; Parisi JR; Estadella D; Ribeiro DA; Granito RN; Renno ACM
    J Biomed Mater Res B Appl Biomater; 2023 Jul; 111(7):1419-1433. PubMed ID: 36840674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional 3D printed porous GelMA/xanthan gum based dressing with biofilm control and wound healing activity.
    Yang Z; Ren X; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112493. PubMed ID: 34857279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer-based biomaterials for chronic wound management: Promises and challenges.
    Maaz Arif M; Khan SM; Gull N; Tabish TA; Zia S; Ullah Khan R; Awais SM; Arif Butt M
    Int J Pharm; 2021 Apr; 598():120270. PubMed ID: 33486030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanomaterials-based Drug Delivery Approaches for Wound Healing.
    Girija AR; Balasubramanian S; Cowin AJ
    Curr Pharm Des; 2022; 28(9):711-726. PubMed ID: 35345993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printed Functional Hydrogel by DNA-Induced Biomineralization for Accelerated Diabetic Wound Healing.
    Kim N; Lee H; Han G; Kang M; Park S; Kim DE; Lee M; Kim MJ; Na Y; Oh S; Bang SJ; Jang TS; Kim HE; Park J; Shin SR; Jung HD
    Adv Sci (Weinh); 2023 Jun; 10(17):e2300816. PubMed ID: 37076933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transforming Wound Management: Nanomaterials and Their Clinical Impact.
    T A; Prabhu A; Baliga V; Bhat S; Thenkondar ST; Nayak Y; Nayak UY
    Pharmaceutics; 2023 May; 15(5):. PubMed ID: 37242802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing.
    Bhar B; Chouhan D; Pai N; Mandal BB
    ACS Appl Bio Mater; 2021 Nov; 4(11):7738-7763. PubMed ID: 35006758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics.
    Naskar A; Kim KS
    Pharmaceutics; 2020 May; 12(6):. PubMed ID: 32486142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management.
    Prete S; Dattilo M; Patitucci F; Pezzi G; Parisi OI; Puoci F
    J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review.
    Keirouz A; Chung M; Kwon J; Fortunato G; Radacsi N
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1626. PubMed ID: 32166881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive review of the application of 3D-bioprinting in chronic wound management.
    Guptha PM; Kanoujia J; Kishore A; Raina N; Wahi A; Gupta PK; Gupta M
    Expert Opin Drug Deliv; 2024 Jun; ():1-22. PubMed ID: 38809187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.