These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 37692390)

  • 1. Unraveling the multifaceted resilience of arsenic resistant bacterium
    Gouveia AG; Salgueiro BA; Ranmar DO; Antunes WDT; Kirchweger P; Golani O; Wolf SG; Elbaum M; Matias PM; Romão CV
    Front Microbiol; 2023; 14():1240798. PubMed ID: 37692390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function prediction of arsenate reductase from Deinococcus indicus DR1.
    Chauhan D; Srivastava PA; Agnihotri V; Yennamalli RM; Priyadarshini R
    J Mol Model; 2019 Jan; 25(1):15. PubMed ID: 30610463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of stress tolerance genes associated with D. indicus strain under extreme environment conditions.
    Dhanapal AR; Venkidasamy B; Solai Ramatchandirane P
    Environ Geochem Health; 2021 Dec; 43(12):4905-4917. PubMed ID: 33486627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional mapping of
    Ranganathan S; Sethi D; Kasivisweswaran S; Ramya L; Priyadarshini R; Yennamalli RM
    Comput Struct Biotechnol J; 2023; 21():519-534. PubMed ID: 36618989
    [No Abstract]   [Full Text] [Related]  

  • 5. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India.
    Suresh K; Reddy GSN; Sengupta S; Shivaji S
    Int J Syst Evol Microbiol; 2004 Mar; 54(Pt 2):457-461. PubMed ID: 15023960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.
    Mateos LM; Villadangos AF; de la Rubia AG; Mourenza A; Marcos-Pascual L; Letek M; Pedre B; Messens J; Gil JA
    Adv Appl Microbiol; 2017; 99():103-137. PubMed ID: 28438267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Polyphosphate Metabolism Coordinating with Manganese Ions Defends against Oxidative Stress in the Extreme Bacterium Deinococcus radiodurans.
    Dai S; Xie Z; Wang B; Yu N; Zhao J; Zhou Y; Hua Y; Tian B
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452031
    [No Abstract]   [Full Text] [Related]  

  • 9. Draft Genome Sequence of
    Chauhan D; Srivastava PA; Yennamalli RM; Priyadarshini R
    Genome Announc; 2017 Aug; 5(31):. PubMed ID: 28774987
    [No Abstract]   [Full Text] [Related]  

  • 10. Signature Arsenic Detoxification Pathways in
    Wu S; Wang L; Gan R; Tong T; Bian H; Li Z; Du S; Deng Z; Chen S
    mBio; 2018 May; 9(3):. PubMed ID: 29717010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of heavy metals resistant bacteria-a strategy for arsenic bioremediation.
    Sher S; Rehman A
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6007-6021. PubMed ID: 31209527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.
    Wu D; Tao X; Wu G; Li X; Liu P
    Recent Pat Food Nutr Agric; 2014; 6(2):73-81. PubMed ID: 25494643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical, chemical, and biological methods for the removal of arsenic compounds.
    Lim KT; Shukor MY; Wasoh H
    Biomed Res Int; 2014; 2014():503784. PubMed ID: 24696853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification.
    Paulose B; Kandasamy S; Dhankher OP
    BMC Plant Biol; 2010 Jun; 10():108. PubMed ID: 20546591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and genomic analysis of multiple heavy metal-resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation.
    Sher S; Hussain SZ; Rehman A
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2243-2254. PubMed ID: 31927763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Resistance Genes and Response to Arsenic in
    Firrincieli A; Presentato A; Favoino G; Marabottini R; Allevato E; Stazi SR; Scarascia Mugnozza G; Harfouche A; Petruccioli M; Turner RJ; Zannoni D; Cappelletti M
    Front Microbiol; 2019; 10():888. PubMed ID: 31133997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions.
    Firrincieli A; Zannoni D; Donini E; Dostálová H; Rädisch R; Iommarini L; Turner RJ; Busche T; Pátek M; Cappelletti M
    Appl Environ Microbiol; 2022 Apr; 88(7):e0220921. PubMed ID: 35311511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Insight into Efflux-Mediated Arsenic Resistance and Biotransformation Potential of
    Bhati R; Sreedharan SM; Rizvi A; Khan MS; Singh R
    Indian J Microbiol; 2022 Sep; 62(3):456-467. PubMed ID: 35974925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: Identification of a protein expression signature for heavy metal exposure.
    Ilyas S; Rehman A; Coelho AV; Sheehan D
    J Proteomics; 2016 Jun; 141():47-56. PubMed ID: 27090762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.