BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37692411)

  • 1. Achieving Isotropic Super-Resolution with a Non-Isocentric Acquisition Geometry in a Next-Generation Tomosynthesis System.
    Acciavatti RJ; Choi CJ; Vent TL; Barufaldi B; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2022; 12031():. PubMed ID: 37692411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Magnification Tomosynthesis for Superior Resolution in Diagnostic Mammography.
    Acciavatti RJ; Vent TL; Choi CJ; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11595():. PubMed ID: 37701413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Isocentric Geometry for Next-Generation Tomosynthesis With Super-Resolution.
    Acciavatti RJ; Choi CJ; Vent TL; Barufaldi B; Cohen EA; Wileyto EP; Maidment ADA
    IEEE Trans Med Imaging; 2024 Jan; 43(1):377-391. PubMed ID: 37603482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposing Rapid Source Pulsing for Improved Super-Resolution in Digital Breast Tomosynthesis.
    Acciavatti RJ; Vent TL; Barufaldi B; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 37927528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Line-based iterative geometric calibration method for a tomosynthesis system.
    Choi CJ; Vent TL; Acciavatti RJ; Maidment ADA
    Med Phys; 2024 Apr; 51(4):2444-2460. PubMed ID: 38394613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Resolution in Digital Breast Tomosynthesis: Limitations of the Conventional System Design and Strategies for Optimization.
    Acciavatti RJ; Vent TL; Barufaldi B; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2020 May; 11513():. PubMed ID: 37842133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial dependency of multiplanar reconstruction in digital breast tomosynthesis.
    Choi CJ; Acciavatti RJ; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37492275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis.
    Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O
    Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of source blur on digital breast tomosynthesis reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2019 Dec; 46(12):5572-5592. PubMed ID: 31494953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Volume Overestimation Artifacts in the Breast Outline Segmentation in Tomosynthesis.
    Acciavatti RJ; Rodríguez-Ruiz A; Vent TL; Bakic PR; Reiser I; Sechopoulos I; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10573():. PubMed ID: 38327670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalization of X-Ray Tube Motion in Digital Breast Tomosynthesis Using Virtual Defrise Phantoms.
    Acciavatti RJ; Barufaldi B; Vent TL; Wileyto EP; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10948():. PubMed ID: 38106641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.